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1 Definitions

The installation tolerances for any magnet in a beam transport line cover 3 positional errors
(∆x, ∆y, ∆s) and 3 angular errors (θx, θy, θs). Here the x − y − s forms a right-handed
curvilinear coordinate system as defined in TRANSPORT. It is a local frame, moving along the
reference trajectory. Its origin is constantly riding on the reference trajectory, +s axis is in
tangential of the reference trajectory (no matter the beam particles are positively charged
or negatively charged), and +x axis is in the radial direction in the bending plane (for a
straight section with no bending, it’s regarded as a right bend with an infinitely large bend
radius).

Usually, the magnet alignment errors are addressed along with orbit corrections in the x and
y planes. Therefore, the transverse positional errors (∆x, ∆y) and the angular errors (θx,
θy, θs) are discussed more often than the longitudinal installation error ∆s.

For a beamline lying in the horizontal plane, the 3 angular errors are called roll, yaw and
pitch respectively. Specifically, the roll is a rotation about the s axis, the yaw is a rotation
about the y axis, while the pitch is a rotation about the x axis.

Next we aim to derive simple formulae to characterize the tolerances, and then apply them
to the BL4N for calculations.

2 Quadrupole Installation Tolerances

A quadrupole’s positional and/or angular errors will cause an angular error to the reference
trajectory locally, leading to a distortion to the reference trajectory downstream (called
closed-orbit distortion in a synchrotron/storage ring). We can isolate these errors (based on
the superposition principle of magnetic field) and discuss their affects separately.

2.1 Positional Error

Take the horizontal plane as an example. As is shown in the diagram Fig.1, there exists 2
frames: x − o − x′ denotes a frame sitting on the reference trajectory; q − a − q′ denotes
a frame sitting on the axis of a magnet. Remember that the Courant-Snyder parameters
(α(s), β(s), γ(s)) are defined nowhere but on the reference trajectory. In the real life the
beam ellipse is NOT necessarily centering on the reference trajectory, either due to an initial
centering error at injection or due to the “closed-orbit distortion” somewhere in the beamline.
It is important to minimize the COD.

The displacement (parallel shift) of a quadrupole in x will cause an error in x′ to the reference
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trajectory, that is,

∆x′ =
x

f
(1)

where f denotes the focal length of the quad (in thin lens approximation). Note that here
we ignore the sign of ∆x′ and only look at its absolute value. We require that such an error
be far smaller than the local beam divergence, i.e.

∆x′ �
√
εx
βx

(2)

where βx denotes the lattice function, εx is the beam emittance (conventionally prescribed
as 4εrms for the hadron machine, or εrms for the electron machine). It’s worthy to point
out that the local beam divergence

√
εx/βx is NOT necessarily equal to the entire beam’s

divergence
√
εxγx unless the phase ellipse is upright (i.e. αx = 0).

We thus get

x�
√
εx
βx

f =

√
εxn

βγβx

f (3)

where εxn denotes the normalized beam emittance (which is constant). For the � sign, we
could use ≤ (0.05×) if easily achieved, ≤ (0.1×) if difficult. The equation is similar in the y
plane.

When a beamline is set up to run at different energies without changing anything to the
optics, the magnet excitation has to change as per relativistic factors βγ. In this case, the βx

and f are independent of beam energy. Thus, the tolerance requirement will become tighter
at high energy than at low energy. This is understood as following.

Figure 1: Diagram showing displacement of a quadrupole (blue frame) relative to the reference
trajectory (red frame).
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For a dipole, its bending radius has to remain unchanged and independent of beam energy,

ρ =
p

qB
=
m0 c βγ

qB
, B =

µ0NI

G
.

Thus, the excitation I has to scale with βγ. Here G denotes the dipole’s pole gap (full).

For a quadrupole, its focal length has to remain unchanged and independent of beam energy,

1

f
= k Leff =

gLeff

Bρ
, g =

Bpole tip

r
=

2µ0NI

r2
, Bρ =

p

q
=
m0cβγ

q
.

As well, the excitation I has to scale with βγ. Here g denotes the magnetic field gradient,
r denotes the quadrupole’s aperture radius.

2.2 Angular Errors

When a quadrupole is rotated by an angle around the +s axis, it will cause beam coupling
between transverse two planes. If the quad has a rotation angle θy around y axis (i.e. yaw),
then the reference trajectory will deviate, in the horizontal plane, from the quad’s axis by
an amount of (tan θy)Leff/2 ' θy Leff/2 at its entrance and exit with opposite sign. So,
the kicks caused will be of opposite sign after passing through the 1st half and the 2nd half
magnet, resulting in a canceled (at least partially canceled) effect to the angle. This does
not mean that we can tolerate any large errors in the angle, instead, it suggests that we may
impose a tight tolerance in the position to reduce the errors in the angle at the same time.

When the magnet has a rotation around x axis (i.e. pitch), the picture is similar to the yaw
except that it is occurring in the vertical plane.

3 Dipole Installation Tolerances

For a dipole, the picture becomes somewhat complicated as the reference trajectory is curved,
i.e., the x− y − s coordinate frame is in a rotation passing through the magnet. Moreover,
the magnet can be of rectangular shape or sector shape. To clarify, here we define the roll,
yaw and pitch to be the angular errors of the magnet being rotated with respect to the
x− y− s frame sitting at the mid-point of reference trajectory inside the magnet (hard edge
model).

For simplicity, we presume the beamline is lying in the horizontal plane and the beam is
bending right (looking downstream). The magnet usually has a good field region which is
specified in the x plane, while in the y plane the field is rather uniform. Thus the positional
errors in x and y normally are not as concerned as the roll and pitch, because the latter two
cause closed orbit distortion.
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As is shown in the diagram Fig.2, a rolled dipole magnet generates a field component Bx

in the bending plane, and this component exists at any location along the curved reference
trajectory inside the magnet. This results in a vertical kick to the reference trajectory after
exiting out of the magnet, represented as

∆y′ =
BxLeff

Bρ
=
By tan θsLeff

Bρ
' ByLeffθs

Bρ
= Θθs (4)

where Θ denotes the nominal bend angle in the horizontal plane. Note that ∆y′ is in +y
direction. Likewise, we require this angle be far smaller than the local beam divergence, i.e.

∆y′ �
√
εy
βy

(5)

We thus get the roll tolerance

θs �
1

Θ

√
εy
βy

. (6)

Figure 2: Diagram showing a right bending dipole rolled around the s axis of a coordinate
frame which sits at mid-point of reference trajectory inside the magnet.
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For a dipole tilted upward or downward, i.e. rotated around the x axis (where the x− y− s
frame is sitting at mid-point of reference trajectory inside the magnet), the situation becomes
complicated. To simplify the picture, we assume that the beam is bending by an angle of
90◦ in the horizontal plane, and also assume that the magnet’s pole face rotation angle is
equal to zero at both ends. In this case, the magnet appears to be rolled at its exit; as a
result, an overall kick caused to the reference trajectory in the vertical plane is represented
as

∆y′ = tan θx(1− cos Θ) ' θx(1− cos Θ), (7)

thus the pitch tolerance is

θx �
1

1− cos Θ

√
εy
βy

, (8)

where Θ denotes the nominal bend angle of the magnet. See diagrams Fig.(3) to Fig.(5) for
details.

Figure 3: Diagram showing a right bending dipole tilted upward. As a result of the tilt, a Bs

component is generated causing minor coupling to the beam while the Bx component is zero
at the magnet entrance.
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4 Application to BL4N

We applied the above formulae Eqs.(3),(6) and (8) to BL4N [1] to calculate the installation
tolerances for quadrupole and dipole magnets. The results are listed in Tables 1 and 2
separately. It’s seen that larger β−function value gives rise to more stringent tolerance;
typically, the positional tolerance is ∼ ±150µm for the quadrupoles; for the dipoles, the
tolerance in roll is more stringent than that in pitch, and the former is less than ±180 mrad.

Figure 4: Looking in s direction at exit of the upward tilted and right bending dipole. The
bending angle is 90◦; the magnet appears to be rolled around the s axis at the magnet exit,
so that a field component Bx is generated, causing vertical kick.
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It’s worthy to point out that the condition for the � sign implies that there is no necessity
to correct the orbit misalignment. But in reality the beamline will be equipped with steering
magnets. The results shown here give us a fairly good sense of the installation tolerances
that we could specify. These magnitudes, namely, ±150µm in position and ±180 mrad in
angle, are in line with the TRIUMF expert’s experience in the beamline installation. Further,
one could carry out sophisticated computations [2] about the orbit errors and propagation,
considering that the installation errors are randomly populated in the beamline magnets.

Figure 5: Top view of reference trajectory passing through the 90◦ right bending dipole. For
any bending angle 0 < Θ ≤ 90◦, the overall vertical kick to the reference trajectory works
out to be ∆y′ = tan θx(1 − cos Θ) ' θx(1 − cos Θ), where θx denotes the upward tilt of the
magnet. Note that ∆y′ is in +y direction,
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Table 1: Installation tolerances in x and y calculated for BL4N quadrupole magnets. In the
calculations, the beam emittance assumed was 0.84 and 1.42πmm-mrad (4rms, unnormal-
ized) in the x and y planes respectively; the βx,y values were taken in the mid-point of the
magnets; and ≤ (0.2×) was used for the � sign.

Quad gLeff [T] f [m] βx [cm] βy [cm] x [mm] y [mm]
4VQ1 -3.8787 -0.91 431.17 3576.17 0.081 0.036
4VQ2 5.9151 0.60 1193.18 424.02 0.032 0.069
4VQ3 8.2138 0.43 1111.48 956.52 0.024 0.033
4VQ4 -4.6530 -0.76 33.97 9113.86 0.240 0.019
4VQ5 3.8952 0.91 12023.00 220.52 0.015 0.146
4VQ6 -4.1376 -0.86 2183.36 2855.81 0.034 0.038
4NQ1 -1.0520 -3.37 2858.75 624.09 0.116 0.322
4NQ2 2.2024 1.61 7868.37 148.78 0.033 0.315
4NQ3 0.9128 3.88 5085.21 445.44 0.100 0.439
4NQ4 -1.8016 -1.97 2714.46 1086.08 0.069 0.142
4NQ5 -0.0338 -104.89 2901.83 1205.11 3.569 7.201
4NQ6 0.4823 7.35 2971.15 1241.87 0.247 0.497
4NQ7 -1.0456 -3.39 1208.49 1025.27 0.179 0.252
4NQ8 1.9899 1.78 1371.19 500.35 0.088 0.190
4NQ9 1.9899 1.78 1166.22 499.47 0.096 0.190
4NQ10 -1.0456 -3.39 1079.81 1023.35 0.189 0.253
4NQ11 1.7555 2.02 3132.91 1248.37 0.066 0.136
4NQ12 -1.3944 -2.54 1920.54 1796.03 0.106 0.143
4NQ13 1.6563 2.14 1117.24 859.33 0.117 0.174
4NQ14 -1.5031 -2.36 543.35 1207.83 0.185 0.162
4NQ15 3.1363 1.13 923.26 387.73 0.068 0.137
4NQ16 -2.7628 -1.28 422.63 854.67 0.114 0.105
4NQ17 2.8708 1.23 820.30 366.27 0.079 0.154
4NQ18 -2.8708 -1.23 334.98 854.14 0.124 0.101
4NQ19 2.8708 1.23 914.01 365.86 0.075 0.154
4NQ20 -2.8708 -1.23 409.25 853.30 0.112 0.101
4NQ21 -1.3690 -2.59 572.27 283.22 0.198 0.367
4NQ22 2.4851 1.43 945.14 181.35 0.085 0.252
4NQ23 -2.7961 -1.27 122.94 801.09 0.210 0.107
4NQ24 3.0992 1.14 234.98 396.04 0.137 0.137
4NQ25 3.0992 1.14 215.28 396.65 0.143 0.137
4NQ26 -2.7961 -1.27 107.66 802.81 0.224 0.107
4NQ27 2.4208 1.46 1097.17 167.57 0.081 0.270
4NQ28 -4.0310 -0.88 572.00 309.04 0.067 0.119
4NQ29 2.8868 1.23 4002.84 477.98 0.036 0.134
4NQ30 -2.9566 -1.20 1323.44 2039.68 0.060 0.063

8



Table 2: Installation tolerances in pitch and roll calculated for BL4N dipole magnets. In
the calculations, the beam emittance assumed was 0.84 and 1.42πmm-mrad (4rms, unnor-
malized) in the x and y planes respectively; the βy value was taken in the mid-point of the
magnets; and ≤ (0.2×) was used for the � sign.

Dipole Bend. Angle [◦] βy [cm] θx [mrad] θs [mrad]
4VMB4 24.8126 2003.64 0.577 0.123
4NMB6 45.0000 1502.57 0.210 0.078
4NMB10 45.0000 1499.66 0.210 0.078
4NMB22 34.0000 496.05 0.626 0.180
4NMB26 34.0000 497.72 0.625 0.180
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