1-1: Introduction to the Opera-3d software

OPERA-3d

• What is OPERA-3d?
• Structure of the package
 - History
• Solution modules
 - TOSCA
 - ELEKTRA
 - SCALA
 - CARMEN
 - SOPRANO
 - TEMPO
 - DEMAG
 - QUENCH
 - STRESS
OPERA-3d

- Software package for the design of electromagnetic products and devices
 - Three dimensional
 - Finite element based
 - most commonly used numerical method for solving continuum physics problems
 - Developed by Vector Fields based on algorithms originated at Rutherford Appleton Laboratory, UK

Structure of OPERA-3d

- Modeller
- Pre-Processor
- Solvers
 - TOSCA, ELEKTRA, SCALA, CARMEN, SOPRANO, TEMPO, DEMAG, QUENCH, STRESS
- Post-Processor
Pre-processing

- **Modeller**
 - Geometric modelling
 - CAD data input and output
 - Automatic meshing
 - Connection to external circuit
 - Launches Analyses and Post-Processor
 - Windows / Motif based

- **Pre-Processor**
 - Extrusion based modelling
 - Automatic and mapped meshing
 - Launches analyses (not DEMAG, STRESS or QUENCH)

Solvers

- **TOSCA**
 - Magnetostatics
 - Electrostatics
 - Current flow

- **Examples**
 - Magnetic resonance imaging magnets
 - Motors and generators
 - Actuators
 - Cathodic protection
 - Switchgear
Solvers

- **ELEKTRA**
 - Time varying fields with eddy currents
 - Steady state AC
 - Transient
 - Velocity

- **Examples**
 - Induction heating
 - Magnetic recording
 - Pipeline inspection
 - Transformers
ELEKTRA - currents in coil supports

Solvers

SCALA
- Electric fields with space charge limited particle beams
 - Thermionic emission
 - Field effect emission
 - User defined emission
 - Emission from plasmas
- Imposed magnetic fields
- Secondary emission

Examples
- X-ray tubes
- Flat screen displays
- Ion sources
X-Ray tube in SCALA

Solvers

- **CARMEN**
 - Time varying fields with rotational or linear motion
 - Eddy currents
 - Non-linear materials
 - Coupling to circuits
 - Mechanical coupling
 - Co-simulation with Simulink™

- **Examples**
 - Motors and generators
 - Position sensors
 - Actuators
Axial flux motor in CARMEN

Solvers

• **SOPRANO**
 - High frequency electromagnetic fields
 - Full wave equation
 • Steady state AC (defined frequency)
 • Eigenvalue (modal analysis)
 - EV also in Concerto

• **Examples**
 - Resonant cavities
 - EMC
Resonant cavity in SOPRANO

Solvers

- **TEMPO**
 - Temperature distribution (Steady State or Transient)
 - Stand alone thermal analysis
 - Heat sources may be imported from other OPERA modules
 - Temperatures may be exported to other OPERA modules

- **Examples**
 - Induction heating and annealing
 - Rotating machine temperature rise
 - Heating due to eddy current braking
Annealing automotive axle in TEMPO

Solvers

• DEMAG
 - Modelling of magnetization process in permanent magnets
 • Residual magnetization pattern
 - Transient eddy current analysis
 - Export of magnetization to other solvers

• Examples
 - Magnetizing fixture design
 - Biased ferrites in microwave structures
Remanent field strength after magnetizing

Solvers

• QUENCH
 - Modelling of superconducting quench
 - Transition between superconducting and normal state
 - Transient thermal analysis
 - Coupled to electric circuit and magnetic fields

• Examples
 - MRI / NMR magnets
 - Particle accelerator magnets
2 concentric solenoids in QUENCH

Solvers

- **STRESS**
 - Mechanical small deformation simulation
 - Elastic limit of materials
 - Anisotropic and orthotropic materials
 - Stand alone analysis with applied loads
 - Body forces imported from electromagnetic simulations
 - Thermal expansion / contraction
 - Temperature distribution from TEMPO

- **Examples**
 - MRI / NMR magnets
 - Electrical machine windings
 - Transformers
Deflection of steel plate due to field from pot core

Post-processing

- Computing useful results for the designer
 - Fields
 - Currents
 - Forces and torque
 - Energy and power
 - Particle trajectories
 - Harmonics
 - Temperature

- Export results to other software
 - Tables

- User programmable