

Beam Physics Note TRI-BN-19-09 May 9, 2019

Kapchinskij-Vladimirskij-Sacherer Envelope Equation from the Low Lagrangian

Thomas Planche, Paul M. Jung

TRIUMF

Abstract: In this note we re-derive Sacherer generalised form of the Kapchinskij-Vladimirskij envelope equation, starting from the Low Lagrangian for electrostatic collisionless plasma. For simplicity, we only treat here the onedimensional case.

1 Setting up the One-Dimensional Problem

Let's assume that we work with a beam that is very wide in the y direction, very long in the z direction, and where all particles travel with the same \dot{z}_0 longitudinal velocity. In this one-dimensional case, the Low Lagrangian [1] for non-relativistic plasma in the electrostatic limit reduces to:

$$L(x, \dot{x}, \phi; t) = \iint f(x_0, \dot{x}_0) \left(\frac{m}{2} \dot{x}^2 - q\phi(x, t) - q\psi(x, t)\right) \, \mathrm{d}x_0 \mathrm{d}\dot{x}_0 + \frac{\epsilon_0}{2} \int \phi'(\bar{x}, t)^2 \mathrm{d}\bar{x} \,. \tag{1}$$

Time t is the independent variable. The variables \bar{x} , x_0 and \dot{x}_0 are dummy integration variables. The functions $x = x(x_0, \dot{x}_0, t)$ and $\dot{x} = \dot{x}(x_0, \dot{x}_0, t)$ map initial particle coordinates (x_0, \dot{x}_0) to the corresponding coordinates at time t. ϕ is the self-potential and $\phi'(\bar{x}, t) = \frac{\partial \phi}{\partial \bar{x}}$. f is the initial plasma density function. In this one-dimensional model particles are actually infinite sheets of charge which leads to m being a surface mass density, and q being a surface charge density.

For simplicity, and without much loss of generality, we choose to represent the effect of external forces using the scalar potential $\psi(x,t)$.¹ Let's also assume that the external focusing force is purely linear:

$$\psi(x,t) = \frac{1}{2}k(t)x^2.$$
 (2)

2 Fixed-Shape Distribution

Let's assume that the shape of the particle distribution, and by extension the shape of ϕ , is time-independent, and that only their size changes with time. This assumption is true, for instance, for a beam with phase-space elliptical symmetry well-matched to a periodic transport system. It is also true in the more artificial case of a K-V beam with purely linear external forces. This assumption leads to:

$$\phi(x,t) = \phi(x,\sigma(t)), \qquad (3)$$

where $\sigma = \sqrt{\langle x^2 \rangle}$, with:

$$\langle x^2 \rangle = \iint f(x_0, \dot{x}_0) \left(x(x_0, \dot{x}_0, t) \right)^2 \mathrm{d}x_0 \mathrm{d}\dot{x}_0 \,.$$
 (4)

Following Sacherer [2], we define the beam emittance $\varepsilon(t)$ as:

$$\varepsilon^2 = \langle x^2 \rangle \langle \dot{x}^2 \rangle - \langle x \dot{x} \rangle^2 \,, \tag{5}$$

Noting that²:

$$\dot{\sigma} = \frac{\langle x\dot{x} \rangle}{\sigma} \,, \tag{6}$$

the Lagrangian becomes:

$$L(\sigma, \dot{\sigma}, \phi; t) = \frac{m}{2} \dot{\sigma}^2 - \frac{m}{2} \frac{\varepsilon^2}{\sigma^2} - \frac{q}{2} k \sigma^2 - q \langle \phi(x, \sigma) \rangle + \frac{\epsilon_0}{2} \int \phi'^2(\bar{x}, \sigma) \mathrm{d}\bar{x} \,. \tag{7}$$

¹the effect of hard-edge magnetic elements can be taken into account by adding a $\dot{qz_0}A_z(x)$ term, which is equivalent to defining $\psi(x,t) = -\dot{z_0}A_z(x,t)$.

(

²since
$$\dot{\sigma} = \sqrt{\langle x^2 \rangle} = \frac{\langle x^2 \rangle}{2\sqrt{\langle x^2 \rangle}} = \frac{2}{2} \frac{\langle x\dot{x} \rangle}{\sigma}$$
. Mind that $\langle \dot{x}^2 \rangle \neq \langle \dot{x}^2 \rangle$.

Hamilton's principle of stationary action leads to:

$$0 = \frac{\delta S}{\delta \phi} \,, \tag{8}$$

and
$$0 = \frac{\delta S}{\delta \sigma}$$
, (9)

where the action $S = \int L dt$. Equation 8 leads to the one-dimensional Poisson equation:

$$\phi'' = -q\frac{h}{\epsilon_0}\,,\tag{10}$$

where h is projection of the charge distribution on the horizontal axis:

$$h(\bar{x},t) = \iint f(x_0, \dot{x}_0) \delta(x(x_0, \dot{x}_0, t) - \bar{x}) \, \mathrm{d}x_0 \mathrm{d}\dot{x}_0 \,. \tag{11}$$

Equation 9 leads to:

$$0 = \ddot{\sigma} - \frac{\varepsilon^2}{\sigma^3} + \frac{qk}{m}\sigma - \frac{q^2}{2m\epsilon_0}\lambda_1$$
(12)

where λ_1 is a dimensionless³ number given by:

$$\lambda_1 = -\frac{2\epsilon_0}{q^2} \left(q \frac{\partial \langle \phi \rangle}{\partial \sigma} - \frac{\epsilon_0}{2} \int \frac{\partial \phi'^2}{\partial \sigma} \mathrm{d}\bar{x} \right) \,. \tag{13}$$

Equation Eq. (12) has the form of Sacherer generalised form of the Kapchinskij-Vladimirskij envelope equation [2, 3]. Now is λ_1 the same than σ -independent than the one in Ref. [2]?

Injecting Eq. (10) into Eq. (13) I calculated the value of λ_1 for the same set of distribution than used by Sacherer. I find that the values of λ_1 are σ -independent, and are identical to those found by Sacherer [2]! See Table 1. Sacherer's definition of λ_1 must be equivalent to Eq. (13), but I have not yet figured out a proof...

	$h(x,\sigma)$	$-rac{2\epsilon_0}{q}\phi'(x,\sigma)$	λ_1	$\sqrt{3}\lambda_1$
Uniform	$\begin{cases} \frac{1}{2\sigma\sqrt{3}}, & x < \sigma\sqrt{3} \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} \frac{x}{\sigma\sqrt{3}}, & x < \sigma\sqrt{3} \\ x/ x & \text{otherwise} \end{cases}$	$\frac{1}{\sqrt{3}}$	1
Parabolic	$\begin{cases} \frac{3(5\sigma^2 - x^2)}{20\sqrt{5}\sigma^3}, & x < \sigma\sqrt{5} \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} x\frac{15\sigma^2 - x^2}{10\sqrt{5}\sigma^3}, & x < \sigma\sqrt{5} \\ x/ x & \text{otherwise} \end{cases}$	$\frac{9}{7\sqrt{5}}$	0.996
Normal	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$	$\operatorname{erf}\left(\frac{x}{\sigma\sqrt{2}}\right)$	$\frac{1}{\sqrt{\pi}}$	0.977
Hollow	$\frac{3}{\sigma^3}\sqrt{\frac{3}{2\pi}}x^2e^{-\frac{3x^2}{2\sigma^2}}$	$\operatorname{erf}\left(\sqrt{\frac{3}{2}}x/\sigma\right) - \frac{x\sqrt{\frac{6}{\pi}}}{\sigma}e^{-\frac{3x^2}{2\sigma^2}}$	$\frac{7}{4\sqrt{3\pi}}$	0.987

Table 1: Numerical evaluation of λ_1 using Eq. (13) for the same set of example distributions than used in Ref. [2]. The numbers in the last column are truncated after the third significant digit.

3 Conclusion

We have shown how to re-derive Sacherer's envelope equation from Low's Lagrangian for the 1-D transverse case. We have not tried yet to re-derive the other cases treated by Sacherer: (1) the 1-D longitudinal, (2) the 2-D transverse, or (3) the full 3-D...

³mind that q is a surface charge density: $\frac{C}{m^2}$.

References

- F. E. Low, A Lagrangian formulation of the Boltzmann-Vlasov equation for plasmas, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 248 (1253) (1958) 282-287. URL http://www.jstor.org/stable/100602
- [2] F. J. Sacherer, RMS envelope equations with space charge, Tech. Rep. DL/70-12 http: //cds.cern.ch/record/322516/files/cer-000245740.pdf, CERN (1970).
- [3] I. M. Kapchinskij, V. V. Vladimirskij, Limitations Of Proton Beam Current In A Strong Focusing Linear Accelerator Associated With The Beam Space Charge, in: Proceedings, 2nd International Conference on High-Energy Accelerators and Instrumentation, HEACC 1959: CERN, Geneva, Switzerland, September 14-19, 1959, 1959, pp. 274–287.