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Equation from the Low Lagrangian
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TRIUMF

Abstract: In this note we re-derive Sacherer generalised form of the Kapchinskij-
Vladimirskij envelope equation, starting from the Low Lagrangian for elec-
trostatic collisionless plasma. For simplicity, we only treat here the one-
dimensional case.
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1 Setting up the One-Dimensional Problem

Let’s assume that we work with a beam that is very wide in the y direction, very long in
the z direction, and where all particles travel with the same ż0 longitudinal velocity. In this
one-dimensional case, the Low Lagrangian [1] for non-relativistic plasma in the electrostatic
limit reduces to:

L(x, ẋ, φ; t) =

∫∫
f(x0, ẋ0)

(m
2
ẋ2 − qφ(x, t)− qψ(x, t)

)
dx0dẋ0 +

ε0
2

∫
φ′(x̄, t)2dx̄ . (1)

Time t is the independent variable. The variables x̄, x0 and ẋ0 are dummy integration
variables. The functions x = x(x0, ẋ0, t) and ẋ = ẋ(x0, ẋ0, t) map initial particle coordinates
(x0, ẋ0) to the corresponding coordinates at time t. φ is the self-potential and φ′(x̄, t) = ∂φ

∂x̄ .
f is the initial plasma density function. In this one-dimensional model particles are actually
infinite sheets of charge which leads to m being a surface mass density, and q being a surface
charge density.

For simplicity, and without much loss of generality, we choose to represent the effect
of external forces using the scalar potential ψ(x, t). 1 Let’s also assume that the external
focusing force is purely linear:

ψ(x, t) =
1

2
k(t)x2 . (2)

2 Fixed-Shape Distribution

Let’s assume that the shape of the particle distribution, and by extension the shape of
φ, is time-independent, and that only their size changes with time. This assumption is true,
for instance, for a beam with phase-space elliptical symmetry well-matched to a periodic
transport system. It is also true in the more artificial case of a K-V beam with purely linear
external forces. This assumption leads to:

φ(x, t) = φ(x, σ(t)) , (3)

where σ =
√
〈x2〉, with:

〈x2〉 =

∫∫
f(x0, ẋ0)

(
x(x0, ẋ0, t)

)2
dx0dẋ0 . (4)

Following Sacherer [2], we define the beam emittance ε(t) as:

ε2 = 〈x2〉〈ẋ2〉 − 〈xẋ〉2 , (5)

Noting that2:

σ̇ =
〈xẋ〉
σ

, (6)

the Lagrangian becomes:

L(σ, σ̇, φ; t) =
m

2
σ̇2 − m

2

ε2

σ2
− q

2
kσ2 − q〈φ(x, σ)〉+

ε0
2

∫
φ′2(x̄, σ)dx̄ . (7)

1the effect of hard-edge magnetic elements can be taken into account by adding a qż0Az(x) term, which
is equivalent to defining ψ(x, t) = −ż0Az(x, t).

2since σ̇ =
˙√
〈x2〉 =

˙〈x2〉
2
√

〈x2〉
= 2

2
〈xẋ〉
σ

. Mind that ˙〈x2〉 6= 〈ẋ2〉.
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Hamilton’s principle of stationary action leads to:

0 =
δS

δφ
, (8)

and 0 =
δS

δσ
, (9)

where the action S =
∫
Ldt. Equation 8 leads to the one-dimensional Poisson equation:

φ′′ = −q h
ε0
, (10)

where h is projection of the charge distribution on the horizontal axis:

h(x̄, t) =

∫∫
f(x0, ẋ0)δ

(
x(x0, ẋ0, t)− x̄

)
dx0dẋ0 . (11)

Equation 9 leads to:

0 = σ̈ − ε2

σ3
+
qk

m
σ − q2

2mε0
λ1 , (12)

where λ1 is a dimensionless3 number given by:

λ1 = −2ε0
q2

(
q
∂〈φ〉
∂σ
− ε0

2

∫
∂φ′2

∂σ
dx̄

)
. (13)

Equation Eq. (12) has the form of Sacherer generalised form of the Kapchinskij-Vladimirskij
envelope equation [2, 3]. Now is λ1 the same than σ-independent than the one in Ref. [2]?

Injecting Eq. (10) into Eq. (13) I calculated the value of λ1 for the same set of distribution
than used by Sacherer. I find that the values of λ1 are σ-independent, and are identical
to those found by Sacherer [2]! See Table 1. Sacherer’s definition of λ1 must be equivalent
to Eq. (13), but I have not yet figured out a proof. . .

h(x, σ) − 2ε0
q φ
′(x, σ) λ1

√
3λ1

Uniform

{
1

2σ
√

3
, |x| < σ

√
3

0 otherwise

{
x

σ
√

3
, |x| < σ

√
3

x/|x| otherwise

1√
3

1

Parabolic


3(5σ2−x2)

20
√

5σ3
, |x| < σ

√
5

0 otherwise

{
x 15σ2−x2

10
√

5σ3
, |x| < σ

√
5

x/|x| otherwise

9
7
√

5
0.996

Normal 1
σ
√

2π
e−

x2

2σ2 erf
(

x
σ
√

2

)
1√
π

0.977

Hollow 3
σ3

√
3

2πx
2e−

3x2

2σ2 erf
(√

3
2x/σ

)
− x
√

6
π

σ e−
3x2

2σ2
7

4
√

3π
0.987

Table 1: Numerical evaluuation of λ1 using Eq. (13) for the same set of example distributions
than used in Ref. [2]. The numbers in the last column are truncated after the third significant
digit.

3 Conclusion

We have shown how to re-derive Sacherer’s envelope equation from Low’s Lagrangian
for the 1-D transverse case. We have not tried yet to re-derive the other cases treated by
Sacherer: (1) the 1-D longitudinal, (2) the 2-D transverse, or (3) the full 3-D. . .

3mind that q is a surface charge density: C
m2 .
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