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Kapchinskij-Vladimirskij-Sacherer Envelope

Equation from the Low Lagrangian

Thomas Planche, Paul M. Jung
TRIUMF

Abstract: In this note we re-derive Sacherer generalised form of the Kapchinskij-
Vladimirskij envelope equation, starting from the Low Lagrangian for elec-
trostatic collisionless plasma. For simplicity, we only treat here the one-
dimensional case.
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1 Setting up the One-Dimensional Problem

Let’s assume that we work with a beam that is very wide in the y direction, very long in
the z direction, and where all particles travel with the same 2y longitudinal velocity. In this
one-dimensional case, the Low Lagrangian [1] for non-relativistic plasma in the electrostatic
limit reduces to:

Lz, i, ¢:t) = //f(xo,:ico) (%ﬁ — qé(a, 1) —qz/;(x,t)) daodig + %’/d(@,t)?dz. (1)

Time t is the independent variable. The variables Z, xo and &g are dummy integration
variables. The functions = z(zg, &o,t) and & = Z(xo, £o, t) map initial particle coordinates
(20, %) to the corresponding coordinates at time t. ¢ is the self-potential and ¢'(Z,t) = %.
f is the initial plasma density function. In this one-dimensional model particles are actually
infinite sheets of charge which leads to m being a surface mass density, and g being a surface
charge density.

For simplicity, and without much loss of generality, we choose to represent the effect
of external forces using the scalar potential 1) (z,t). ! Let’s also assume that the external
focusing force is purely linear:

Y1) = Sh(D)a? @)

2 Fixed-Shape Distribution

Let’s assume that the shape of the particle distribution, and by extension the shape of
¢, is time-independent, and that only their size changes with time. This assumption is true,
for instance, for a beam with phase-space elliptical symmetry well-matched to a periodic
transport system. It is also true in the more artificial case of a K-V beam with purely linear
external forces. This assumption leads to:

(b(x’ t) = ¢($, U(t)) ) (3)
where 0 = m, with:
<.’L‘2> = // f(.%‘o, j}o)(x(.’lﬁo, i‘o, t))2 dl’odi‘o . (4)

Following Sacherer [2], we define the beam emittance £(t) as:

e? = (2°)(i”) — (wi)?, (5)
Noting that?:
(z)

6=, (6)

the Lagrangian becomes:

2
Lio,5,6it) = 50 = 5 5 = ko g, + 3 [ F@opz (@)
2 202 2 2

Ithe effect of hard-edge magnetic elements can be taken into account by adding a q20 A, (x) term, which
is equivalent to defining ¥ (x,t) = —Z0A.(x,t).

2since & = /{2%) = 220 = 2829) \find that (2?) # (32).

24/(z2)
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Hamilton’s principle of stationary action leads to:
08

:%,
andO:é—S, (9)
o

where the action S = f Ldt. Equation 8 leads to the one-dimensional Poisson equation:

0 (8)

(b” =—q—, (10)

€0

where h is projection of the charge distribution on the horizontal axis:

h(i‘,t) = // f(l‘o, i‘o)&(l‘(.’lﬁo,i‘o, t) — .f‘) dxodig . (11)

Equation 9 leads to:

where \; is a dimensionless® number given by:

20 () [007

Equation Eq. (12) has the form of Sacherer generalised form of the Kapchinskij-Vladimirskij
envelope equation [2, 3]. Now is A; the same than o-independent than the one in Ref. [2]?

Injecting Eq. (10) into Eq. (13) I calculated the value of Ay for the same set of distribution
than used by Sacherer. I find that the values of \; are o-independent, and are identical
to those found by Sacherer [2]! See Table 1. Sacherer’s definition of A; must be equivalent
to Eq. (13), but I have not yet figured out a proof. ..

h(az,a) 72%(15,(1'70) A1 \/g)\l
#7 x| < ov3 —Z-, x| < ov3
Uniform 20v/3 2 oV3 l« \% 1
0 otherwise x/|z| otherwise 3
3(50°—a%) gl —® 1) < 5y /5
Parabolic 20v50% 2l <ov5 10V5? “ v 7%/5 0.996
0 otherwise x/|z| otherwise
1 ) T 1
Normal —5=€ 27 erf (o\/i) 7= 0.977
: o? zy/ S _ 322
Hollow 3 %xQe_% erf <\/§x/0) - #e 207 4\/737 0.987

Table 1: Numerical evaluuation of A; using Eq. (13) for the same set of example distributions
than used in Ref. [2]. The numbers in the last column are truncated after the third significant
digit.

3 Conclusion

We have shown how to re-derive Sacherer’s envelope equation from Low’s Lagrangian
for the 1-D transverse case. We have not tried yet to re-derive the other cases treated by
Sacherer: (1) the 1-D longitudinal, (2) the 2-D transverse, or (3) the full 3-D. ..

3mind that ¢ is a surface charge density: %
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