
Beam Physics Note
TRI-BN-22-09
April 12, 2022

Element Command Automated Summary Tool

Olivier Shelbaya

TRIUMF

Abstract: Parsing through the ISAC activities log, which records timestamped I/O
controller commands to the ISAC accelerator and beamline optics, it is possible
to visualize tuning interventions on the apparatus, by plotting the number of com-
mands per section against time. Additionally, discretization of the 24 h day into
timebins allows for a method for automatically estimating tuning time. This tool,
ECAS, is meant to aid in establishing a more robust quantitative metric for past,
present and future tuning overhead times at TRIUMF-ISAC.

4004 Wesbrook Mall, Vancouver, B.C. Canada V6T 2A3 · Tel: 604 222-1047 · www.triumf.ca

TRI-BN-22-09 Page 1

1 Introduction

This report documents software that has been developed to visualize and quantify machine tuning
time at TRIUMF-ISAC. It is clear that the term tuning itself can potentially be interpreted in different
ways, for example ”tuning to experiment” versus ”tuning for development” or training. It is acknowl-
edged that the nature of the tuning intervention is highly dependent upon the scheduled intended
use of beam at that time. For instance, tuning done for practice over an 8 hour shift may not be
carried out with the same efficiency as when it is being tuned to an experiment, with a scheduled
starting time. This work does not distinguish between causes of tuning and instead takes a more
fundamental approach: counting the number of commands, per section, per time. The advantage of
this approach is that it is robust, the disadvantage is that the aforementioned sub-structures (beam
delivery vs training vs development) are averaged together and in a sense, lost.

2 Quantification of Tuning

Another issue is the relative ambiguity of defining tuning time. As far as the linac is concerned, it
is only being tuned when commands are sent which alter its optics or other support infrastructure
(vacuum, water cooling, etc..) However, from an operational standpoint, tuning time is a measure of
how long a human operator must dedicate during their shift to the task of intervening with the control
system to accomplish a goal, such as getting beam to experiment. Unfortunately, the quantification
of human-time invested is not straightforward to reconstruct from the logs. The only programatically
logged information is that found in the in/out controllers (IOCs) logfiles, located at [1], which list the
process variable (PV), time, and other information such as initial and final values of the command.
As an example:

csbioc:43563 Fri May 21 09:50:26 2021 21-May-21 09:50:19 isacepgate gateway CSB:Q14:POS:VOL.VAL new=984.1 old=934.1

shows a recorded command on quadrupole CSB:Q14, set from 934.1 V to 984.1 V, with the com-
mand’s time logged along with information on its source. Using python, the logfile’s contents to a
list[]. In parallel, xml2optr has been used to create a nonsense TRANSOPTR file containing all
of the ISAC optics, done by creating a mock beampath in the acc/ database which includes all
ISAC files. This creates a file data.dat with over 350 elements, each of which includes its full PV
address. The accpy package allows for the easy reading of data.dat to a datadat class, which
contains dictionary-key pairs of all these PVs. It is straightforward to then parse through the IOC
logfiles and record the number and time of each command, for each distinct PV, for each beamline
or accelerator section. This is represented in Figure 1.

TRI-BN-22-09 Page 2

Figure 1: Representation of the structure of operations performed by ecas.py, using procedurally
generated data.dat files with xml2optr, which include lists of PVs associated to each optics
setpoint. This populates a dictionary-key pair for each element, which is then populated with
recorded commands in the IOC logfile, along with the time of the recorded commands.

TRI-BN-22-09 Page 3

It is then a matter of specifying the date range, which is handled using the python package pandas:

start_input="2021-10-01"

end_input="2021-10-31"

[...]

daterange=pd.date_range(start=start_input,end=end_input)

[...]

for date in daterange.strftime("%Y%m%d"):

[loop through daterange, obtain IOC files, parse data.dat entries]

For each date in the user specified range, the IOC logfile is saved locally and read into a list[]:

url=’http://isacwserv.triumf.ca/onlylocal/isacdata/log/’+str(date)+’/iocLog.isac’

r = requests.get(url,allow_redirects=False)

todayfile=’ioclog-’+str(date)+’.dat’

open(todayfile,’wb’).write(r.content)

print(url,tunefile)

with open(todayfile) as fileIn:

rawData = [line.split() for line in fileIn]

The list rawData contains each line of the logfile. A loop then cycles through data.dat’s elements
(PV names) and the lines of rawData:

datadat = DataDat(file=optr_dir+"data.dat")

#cycle through datadat

intervention={}

time={}

#intervention: a dict with keys pv_name which counts total number of key hits in logfile

#time: a dict with keys pv_name which logs an array containing the times of intervention

#for each device

for element in datadat[’elements’]:

pv_name_full = element[’name’]

pv_name=":".join(pv_name_full.split(":",2)[:2])

for line in rawData:

#print(’line:’,line)

try: #crashed on empty lines, add try/except - skip/don’t count if line empty..

time_val=str(line[4])

for item in line:

if(pv_name in item):

TRI-BN-22-09 Page 4

if pv_name not in intervention:

intervention[pv_name] = 1

time[pv_name] = [time_val]

else:

intervention[pv_name] +=1

time[pv_name].append(time_val)

else:

if pv_name not in intervention:

intervention[pv_name] = 0

time[pv_name] = [0]

else:

intervention[pv_name]+= 0

except:

#print("skipping empty line:",todayfile)

pass

These dicts then allow for the generation of plots using gnuplot for robustness. Together with the
package pylatex, ecas.py is capable of automatically producing .pdf formatted reports showing
plots of the daily tuning interventions, color coded by section, shown in Figure 2. The plot shows the
recorded commands on the optics elements at ISAC during the 24 hour day 2021-10-21, showing
optics setpoint changes commanded at a variety of sections in the ISAC beamline and accelerator
system.

 0

 5

 10

 15

 20

 25

 30

m
inuit

2am
4am

6am
sc 8am

10am
noon

2pm
sc 4pm

6pm
8pm

10pm
sc

20211021

ITE	0.0 min

ITW	0.0 min

IMS	0.0 min

CSB	0.0 min

IOS	75.0 min

ILT	50.0 min

IRA	80.0 min

MEBT	80.0 min

DTL	110.0 min

HEBT	40.0 min

DSB	0.0 min

SCB	0.0 min

SCC	0.0 min

SEBT	0.0 min

T
o

ta
l
C

o
m

m
a

n
d

s
 (

5
m

in
 B

in
n

in
g

)

IOS
ILT-IRA

MEBT
DTL

HEBT
SCRF

SEBT
ITE

ITW
IMS

Figure 2: ECAS compiled tuning summary for 2021-10-21.

TRI-BN-22-09 Page 5

3 Cumulative Tuning Time

The tuning time is quantified by discretizing each 24 hour calendar day into a fixed number of
timebins, 288 in the case of Figure 2, working out to 5 min. intervals. The tuning time is computed
as the number of non-empty timebins in a fixed calendar day. This granularity is intended to account
for that fact that changes to the optics is procedurally done by operators, while following procedures
that call for other actions such as tune documentation or safety checks.

Thus, the counting methodology draws no distinction between 100 commands sent in a 4 minute
interval, versus a single command sent at one time, both will count as ”five minutes of tuning”, if the
bin count is set to 288. Figure 3 shows the tallied total number of optics setpoint change commands
recorded during 2021-06, over a 30 day period. This is useful in visualizing the relative share of
optics setpoint changes commanded in different sections, a proxy for both their complexity and their
subscription.

 0

 50

 100

 150

 200

 250

 300

20211001

20211002

20211003

20211004

20211005

20211006

20211007

20211008

20211009

20211010

20211011

20211012

20211013

20211014

20211015

20211016

20211017

20211018

20211019

20211020

20211021

20211022

20211023

20211024

20211025

20211026

20211027

20211028

20211029

20211030

20211031

T
o

ta
l
D

a
ily

 C
o

m
m

a
n

d
s
 P

e
r

S
e

c
ti
o

n

IOS
ILT

IRA
MEBT

DTL
HEBT

Total Daily Tuning Commands

Figure 3: ECAS compiled record of total PV optics setpoint changes between 2021-10-01 and
2021-10-31, color coded by section.

Finally, a stacked area plot is created by creating an output file combined times.dat which contains
the date in YYYYMMDD format, along with the section-by-section breakdown of total tallied tuning time.
gnuplot uses this file to produce the output shown in Figure 4.

TRI-BN-22-09 Page 6

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2021-09-30

2021-10-07

2021-10-14

2021-10-21

2021-10-28

2021-11-04

C
u

m
u

la
ti
v
e

 T
u

n
in

g
 T

im
e

 P
e

r
S

e
c
ti
o

n
 [

m
in

.]
IOS
ILT

IRA
MEBT

DTL
HEBT

Cumulative Tuning Time (sum of nonzero bin count)

Figure 4: ECAS compiled record of cumulative tuning time using 5 min. timebins between
2021-10-01 and 2021-10-31, color coded by section.

4 Conclusion

The capability presented[2] in this report shows an application of the package accpy and xml2optr

to produce a quantified estimate of tuning times along with a visual display of the recorded tuning
interventions. This is presently being used to develop a more robust quantitative approach to
analyzing tuning overhead time at TRIUMF-ISAC.

References

[1] isacwserv.triumf.ca log file repository.

[2] gitlab.triumf.ca ECAS-development repository.

http://isacwserv.triumf.ca/onlylocal/isacdata/log/
https://gitlab.triumf.ca/oshelb/ecas-dev

	Introduction
	Quantification of Tuning
	Cumulative Tuning Time
	Conclusion

