IMS to Polarizer Beam Transport

Olivier Shelbaya, Emma Ghelfi, Giordano Kogler Anele, Rick Baartman

TRIUMF

Abstract: The ISAC Mass Separator network of beamlines is added to the /acc database, enabling realtime TRANSOPTR-supported tuning using model coupled accelerator tuning. Baartman's original TRANSOPTR simulations and design tune are used to simulate IMS to polarizer beam transport.

Contents

1 Introduction 2
1.1 Sequence ims_mb1 2
1.2 Sequence ims_db0.xml 4
1.3 Sequence ims_db6.xml 5
1.4 Sequence ims_db15.xml 8
1.5 Sequence ims_db24.xml 11
1.6 Sequence ims_db26.xml 11
1.7 Sequence ilt_db1.xml 15
1.8 Sequence ilt_db7.xml 16
1.9 Sequence ilt_db13.xml 18
1.10 Sequence ilt_db21.xml 20
1.11 Sequence ile_db1.xml 22
1.12 Sequence ile_db5.xml 22
1.13 Sequence ile_db11.xml 24
1.14 Sequence ile2_db1.xml 25
1.15 Sequence ile2_db3.xml 27
1.16 Sequence ile2_db9.xml 27
2 Transport Tune 30
3 Summary 32
Appendices 33
A fort.label for IMS-Polarizer 33

1 Introduction

This document records the implementation of the TRANSOPTR model of the ISAC mass separator (IMS) section in the acc repository, enabling automated generation of simulations and use of MCAT[1] for the ISAC Mass Separator beamlines. Note: All presented dimensions in this report are metric.

1.1 Sequence ims_mb1

The sequence includes the pre-separator dipole magnet, whose simulation parameters are shown in Table 1. Table 2 shows the sequence, including starting at ITW:IV5 centerpoint and terminating at IMS:IV0 centerpoint. A diagram including pre-separator is shown in Figure 1.

Parameter	Value
θ [deg]	-60.0
Entrance edge [deg]	15.0
Exit edge [deg]	0.0
field index	0.0
k1	0.200
k2	0.0
Vac. Chamb. Gap [cm]	7.0

Table 1: Parameters supplied to TRANSOPTR for ISAC pre-separator magnet.

sequence ims mb1			
Drawing		ISK4214D-R99	
Flement Name	Element Type	Position S[mm]	Length L[mm]
start sequence	marker	0.0	0.0
IMS:MB1	y-dipole (mb)	699.41	547.69
end sequence	marker	1320.85	0.0

Table 2: Sequence ims_mb1, the pre-separator downstream of the ISAC targets. All element positions are referenced to the drawing listed in the table.

Figure 1: Sketch drawing ISK4214D-R99.dwg, showing ITW source, exit module, preseparator (IMS:MB0), and the first IMS straight section, up to the HV cage.

1.2 Sequence ims_db0.xml

This sequence, listed in Table 3, starts at IMS:IV0 centerpoint and terminates at the start of the IMS high voltage cage, prior to AC6. This sequence was taken from design TRANSOPTR files supplied by R. Baartman.

sequence ims_db0			
Source		Baartman sy.f	
Drawing		Figu	e 1
Element Name	Type	Position s [mm]	Length L [mm]
start sequence	marker	0.0	0.0
Fringe Integrals	fringeQ	0.0	0.0
IMS:YSLIT0	slit	196.32	0.0
IMS:FC0 ${ }^{\dagger}$	fc	304.28	0.0
IMS:Q1	EQuad	534.90	142.494
IMS:Q2	EQuad	836.12	269.494
IMS:Q3	EQuad	1137.34	142.494
IMS:RPMX3A	rpm	1936.68	0.0
IMS:RPMY3A ${ }^{\dagger}$	rpm	1937.00	0.0
IMS:XCB3 ${ }^{\dagger}$	ecb	2331.39	0.0
IMS:YCB3 ${ }^{\dagger}$	ecb	2431.47	0.0
IMS:FC3 ${ }^{\dagger}$	fc	2600.01	0.0
IMS:RPMX3C	rpm	2787.83	0.0
IMS:RPMY3C ${ }^{\dagger}$	rpm	2788.00	0.0
IMS:Q4	EQuad	3150.04	142.494
IMS:Q5	EQuad	3578.28	269.494
IMS:Q6	EQuad	4006.52	142.494
IMS:RPMY6A	rpm	4819.32	0.0
IMS:RPMX6A	rpm	4844.72	0.0
end sequence	marker	5082.87	0.0

Table 3: Sequence ims_db0, the first optics section in the mass separator room, prior to the high voltage cage. \dagger indicates approximate placement. A call to fringeQ using Wollnik integrals[2] using $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.092,0.000,0.031,-0.238)$ is used at the start of the above sequence.

1.3 Sequence ims_db6.xml

This sequence, listed in Table 4, includes the high voltage cage and mass separator magnet, shown in Figure 2, using parameters from Table 5. Dimensions obtained from Baartman's design sy.f files. Envelopes and distributions from yslit0, through the mass separator up to IMS:FC14 are shown in Fig. 7 and 8.

Figure 2: Sketch drawing ISK4214D-R99.dwg, including IMS HV cage, mass separator magnet and emittance rig. The outer bounds of the HV cage is represented by a dotted line.

Source		Baartman sy.f	
Design Drawing		Figure 2	
Element Name	Element Type	Position s [mm]	Length L [mm]
start sequence	marker	0.0	0.0
Fringe Integrals	fringeQ	0.0	0.0
IMS:XCB6 ${ }^{\dagger}$	ecb	525.39	0.0
IMS:RPMX6B	rpm	559.41	0.0
IMS:RPMY6B	rpm	622.91	0.0
IMS:Q7	EQuad	835.26	142.494
IMS:Q8	EQuad	1086.97	142.494
IMS:YCB8 ${ }^{\dagger}$	ecb	1270.62	0.0
IMS:M8	marker	1445.11	0.0
IMS:Q9	EQuad	1638.41	142.494
IMS:Q10	EQuad	1890.12	142.494
IMS:YSLIT10A	slit	2242.16	var. width
IMS:FC10A ${ }^{\dagger}$	fc	2351.00	0.0
IMS:YCB10 ${ }^{\dagger}$	ecb	2414.97	0.0
IMS:HARP10B	harp	2800.96	0.0
IMS:MB2	y-dipole (mb)	4471.82	2356.194
IMS:EMIT11 ${ }^{\dagger}$	marker	7026.46	0.0
IMS:FC11	fc	7159.00	0.0
IMS:YSLIT11B	slit	7267.91	var. width
Fringe Integrals	fringeQ	7300.00	0.0
IMS:Q11	EQuad	7431.74	60.96
IMS:Q12	EQuad	7507.94	66.04
IMS:Q12	EQuad	7871.15	66.04
IMS:Q11	EQuad	7949.89	66.04
IMS:XCB14 ${ }^{\dagger}$	ecb	8134.59	0.0
IMS:YCB14 ${ }^{\dagger}$	ecb	8197.19	0.0
IMS:FC14 ${ }^{\dagger}$	fc	8292.80	0.0
IMS:RPM14 ${ }^{\dagger}$	rpm	8392.80	0.0
end sequence	marker	8826.82	0.0

Table 4: Sequence ims_db6, the high voltage platform, including mass separator magnet and emittance rig. ${ }^{\dagger}$ indicates approximate placement. The fringeQ uses $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.092,0.000,0.031,-0.238)$, while the second uses fringeQ call use $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.087,0.005,0.033,-0.234)$.

Parameter	Value
θ [deg]	135.0
Entrance edge [deg]	0.0
Exit edge [deg]	0.0
field index	0.506
k1	0.260
k2	0.0
Vac. Chamb. Gap [cm]	10.0

Table 5: Parameters supplied to TRANSOPTR for ISAC mass separator magnet (IMS:MB2).

Figure 3: TRANSOPTR envelopes of an $A / q=200$ beam at kinetic energy 60 keV , from yslit0 until the exit of the mass separator, encompassing sequences from Tables 3 and 4. Quadrupole voltages shown at the bottom of the plot.

Figure 4: Left: transverse beam distributions at $s=0$ (IMS:YSLITO) and right: output transverse distributions at the end of the simulation (IMS:RPM14) shown in Figure 7.

1.4 Sequence ims_db15.xml

The sequence is shown in Figure 5 and includes spherical electrostatic bender IMS:B18 with parameters listed in listed in Table 6, is shown in Table. 7. It starts after the HV cage and terminates immediately upstream of bender IMS:B23.

Parameter	Value
θ [deg]	-45.00
k1	0.212
cee	1.00
Electrode Gap [cm]	3.810

Table 6: Parameters used for spherical bender IMS:B18; cee is the ratio of bend radius to orthogonal radius.

Figure 5: Sketch drawing ISK4214D-R99.dwg, showing IMS line out of the HV cage, featuring both spherical benders IMS:B23 (IIS) and CSB:B1 (CSB). The outer bounds of the HV cage is represented by a dotted line.

sequence ims_db15			
Source		Baartman sy.f	
Design Drawing		Figure 5	
Element Name	Element Type	Position s [mm]	Length L [mm]
start sequence	marker	0.0	0.0
IMS:Q15	EQuad	427.36	61.14
IMS:Q16	EQuad	516.25	61.14
IMS:Q17	EQuad	668.62	61.14
IMS:Q18	EQuad	757.51	61.14
IMS:XCB18 ${ }^{\dagger}$	ecb	944.83	0.0
IMS:YCB18 ${ }^{\dagger}$	ecb	1025.94	0.0
IMS:RPM18 ${ }^{\dagger}$	rpm	1095.55	0.0
IMS:ATT18 ${ }^{\dagger}$	marker	1190.64	0.0
IMS:B18	yeb	1418.50	199.49
IMS:FC19 ${ }^{\dagger}$	fc	1860.91	0.0
IMS:XCB19 ${ }^{\dagger}$	ecb	1945.15	0.0
IMS:Q19	EQuad	1982.28	61.14
IMS:Q20	EQuad	2247.38	61.14
IMS:LPM20 ${ }^{\dagger}$	marker	2387.92	0.0
IMS:CEM20 ${ }^{\dagger}$	marker	2494.76	0.0
IMS:Q21	EQuad	2561.48	61.14
IMS:Q22	EQuad	3316.44	61.14
IMS:YCB22 ${ }^{\dagger}$	ecb	3417.98	0.0
IMS:YSLIT22 ${ }^{\dagger}$	slit	3471.72	0.0
IMS:RPM22 ${ }^{\dagger}$	rpm	3505.71	0.0
IMS:XSLIT22 ${ }^{\dagger}$	slit	3535.22	0.0
IMS:XCB23 ${ }^{\dagger}$	ecb	3592.23	0.0
IMS:Q23	EQuad	3630.49	61.14
end sequence	marker	3791.51	0.0

Table 7: Sequence ims_db15, the optics following the post-MB2 doublet (Q11/12). ${ }^{\dagger}$ indicates approximate placement. All quadrupoles in this sequence use Wollnik integrals $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.087,0.005,0.033,-0.234)$.

1.5 Sequence ims_db24.xml

This sequence is shown in Figure 5 and has dimensions listed in 8. It starts at intersection between curved and straight reference trajectories at IMS:B23, continuing straight (B23 open, unpowered) to the branch point between straight and curved reference trajectories at CSB:B1, which terminates the sequence. In the present sequence, IMS:B23 is only represented as a marker.

Source			sequence ims_db24
Design Drawing	Baartman sy.f		
Element Name	Element Type	Position s [mm]	Length $L[\mathrm{~mm}]$
start sequence	marker	0.0	0.0
IMS:B23	marker	0.0	0.0
IMS:Q24	EQuad	519.98	61.14
IMS:YCB24	ecb	621.88	0.0
IMS:YSLIT24	slit	675.52	var. width
IMS:XCB25	ecb	796.12	0.0
IMS:RPM24 ${ }^{\dagger}$	rpm	710.00	0.0
IMS:XSLIT24	slit	739.02	var. width
IMS:Q25	EQuad	834.13	61.14
end sequence	marker	964.27	0.0

Table 8: Sequence ims_db24, the short straight section between spherical bend electrodes IMS:B23 and CSB:B1. † indicates approximate placement. All quadrupoles in this sequence use Wollnik integrals $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=$ (0.087,0.005,0.033,-0.234).

1.6 Sequence ims_db26.xml

The sequence starts at the intersection between IMS and CSB beamlines and terminates after IMS:Q37 and is shown in Figure 6 and listed in Table 9. All spherical benders parameters as shown in Table 6.

Figure 6: Sketch drawing ISK4214D-R99.dwg, showing IMS following CSB:B1, up to IMS:Q37.
sequence ims_db26

Source		Baartman sy.f	
Design Drawing		Figure 6	
Element Name	Element Type	Position s [mm]	Length L [mm]
start sequence	marker	0.0	0.0
CSB:B1	marker	0.0	0.0
IMS:Q26	EQuad	551.44	61.14
IMS:YCB26 ${ }^{\dagger}$	ecb	621.30	0.0
IMS:XCB27 ${ }^{\dagger}$	ecb	795.55	0.0
IMS:Q27	EQuad	865.41	61.14
IMS:YCB28 ${ }^{\dagger}$	ecb	1615.85	0.0
IMS:XCB29 ${ }^{\dagger}$	ecb	1790.09	0.0
IMS:Q28	EQuad	1545.99	61.14
IMS:Q29	EQuad	1859.96	61.14
IMS:B30	yeb	2089.33	199.49
IMS:Q30	EQuad	2350.39	48.44
IMS:Q31	EQuad	2420.24	35.74
IMS:RPM31 ${ }^{\dagger}$	rpm	2496.08	0.0
IMS:Q32	EQuad	2568.07	35.74
IMS:Q33	EQuad	2637.92	48.44
IMS:B33	yeb	2901.32	199.49
IMS:Q34	EQuad	3129.15	61.14
IMS:LPM34 ${ }^{\dagger}$	lpm	3251.13	0.0
IMS:CEM34 ${ }^{\dagger}$	cem	3326.97	0.0
IMS:FC34 ${ }^{\dagger}$	fc	3326.97	0.0
IMS:Q35	EQuad	3443.10	61.14
IMS:Q36	EQuad	4123.56	61.14
IMS:XCB36 ${ }^{\dagger}$	ecb	4196.57	0.0
IMS:YCB37 ${ }^{\dagger}$	ecb	4370.82	0.0
IMS:Q37	EQuad	4437.48	61.14
end sequence	marker	4494.66	0.0

Table 9: Sequence ims_db26, the section following the open CSB:B1, which terminates beyond IMS:Q37. ${ }^{\dagger}$ indicates approximate placement. All quadrupoles in this sequence use Wollnik integrals $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.087,0.005,0.033,-0.234)$.

Figure 7: TRANSOPTR envelopes of an $A / q=200$ beam at kinetic energy 60 keV , from yslit0 until the exit of the mass separator, encompassing sequences from Tables 3 and 4. Quadrupole voltages shown at the bottom of the plot.

Figure 8: Left: transverse beam distributions at $s=0$ (IMS:YSLIT0) and right: output transverse distributions at the end of the simulation (IMS:RPM14) shown in Figure 7.

1.7 Sequence ilt_db1.xml

This sequence, shown in Table 10, starts at the end of the IMS section with quadrupoles ILT:Q1 and Q2 leading into the vertical bend section leading to the ILT beamline, with a sketch representation in Figure 9.
sequence ilt_db1

Source		Baartman sy.f	
Design Drawing		Figure 9	
Element Name	Element Type	Position s [mm]	Length L [mm]
start sequence	marker	0.0	0.0
ILT:Q1	EQuad	589.36	60.96
ILT:XCB1 ${ }^{\dagger}$	ecb	690.83	0.0
ILT:RPM1 ${ }^{\dagger}$	marker	778.13	0.0
ILT:YCB2 ${ }^{\dagger}$	ecb	865.08	0.0
ILT:Q2	EQuad	903.47	60.96
ILT:VB3	eb	1131.09	199.49
ILT:Q3 ${ }^{\dagger}$	EQuad	1394.67	48.26
ILT:Q4	EQuad	1464.50	35.56
ILT:RPM4 ${ }^{\dagger}$	marker	1565.97	0.0
ILT:Q5	EQuad	1612.39	35.56
ILT:Q6	EQuad	1682.19	48.26
ILT:VB6	eb	1925.75	159.47
ILT:YCB7 ${ }^{\dagger}$	ecb	2176.54	0.0
ILT:XCB7 ${ }^{\dagger}$	deflx	2239.89	50.65
end sequence	marker	2265.20	0.0

Table 10: Sequence ilt_db1, the optics leading into the vertical section. † indicates approximate placement. All quadrupoles in this sequence use Wollnik integrals $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.087,0.005,0.033,-0.234)$. ILT:VB3 is a 45° spherical, while ILT:VB6 is a $\theta=36^{\circ}$ spherical bender. Both devices have k1, cee and Gap identical to Table 6. ILT:XCB7 is a 9° degree x-deflector.

Figure 9: Sketch drawing ISK4210D-rev4.dwg, showing ILT section following end of the IMS section

1.8 Sequence ilt_db7.xml

The sequence, shown in Figure 10, is listed in Table 11 and contains the first part of the ILT vertical section, linking IMS and ISAC experiments. This sequence ends before the movable spherical bender that allows beam to be sent to TRINAT (ILY) or to continue upward in the ILT line, towards yield station (ILY) and ISAC-I experimental hall floor.

Figure 10: Sketch drawing ISK4210-rev4.dwg, showing first vertical segment of the ILT line, with this particular image terminating after the movable bend electrode to the TRINAT (ILZ) experiment. Note interconnection of quadrupoles ILT:Q9,10,11,13 and 14 to EPICS variable ILT:Q1.

sequence ilt_db7			
Source		Baartman sy.f	
Design Drawing		Figure 9	
Element Name	Element Type	Position s [mm]	Length L [mm]
start sequence	marker	0.0	0.0
ILT:RPM7 ${ }^{\dagger}$	marker	8.68	0.0
IMS:FC7 ${ }^{\dagger}$	fc	91.01	0.0
ILT:Q8	EQuad	247.27	61.14
ILT:KICK8 ${ }^{\dagger}$	marker	428.24	0.0
ILT:Q9	EQuad	928.05	61.14
ILT:YCB9 ${ }^{\dagger}$	ecb	987.55	0.0
ILT:XCB10 ${ }^{\dagger}$	ecb	1160.78	0.0
ILT:Q10	EQuad	1242.01	61.14
ILT:Q11	EQuad	1922.41	61.14
ILT:Q12	EQuad	2236.37	61.14
end sequence	marker	2270.14	0.0

Table 11: Sequence ilt_db7, the optics ij the vertical section. † indicates approximate placement. All quadrupoles in this sequence use Wollnik integrals $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.087,0.004,0.031,-0.232)$.

1.9 Sequence ilt_db13.xml

This sequence is shown in Figure 11 and the dimensions are shown in Table 12. Transport through this section assumes the spherical bender ILZ:VB1 to TRINAT (ILY) is open/unpowered, and encompasses the second part of the ILT vertical section, terminating at the start of the bend section which leads to the ISAC experimental hall floor. This section is located in the ISAC-I B1 level, at the TRINAT level.

Figure 11: Sketch drawing ISK4210D-rev4.dwg, showing the second half of the vertical ILT section, linking IMS and ISAC experimental hall floor level.
sequence ilt_db13

Source		Baartman sy.f	
Design Drawing		Figure 11	
Element Name	Element Type	Position s [mm]	Length L [mm]
start sequence	marker	0.0	0.0
ILT:Q13	EQuad	646.99	61.14
ILT:Q14	EQuad	960.94	61.14
ILT:Q15	EQuad	1641.63	61.14
ILT:LPM15 ${ }^{\dagger}$	marker	1724.80	0.0
ILT:CEM15 ${ }^{\dagger}$	marker	1829.14	0.0
ILT:Q16	EQuad	1955.58	61.14
ILT:Q17	EQuad	2635.99	61.14
ILT:YCB17 ${ }^{\dagger}$	ecb	2694.40	0.0
ILT:RPM17 ${ }^{\dagger}$	marker	2781.38	0.0
ILT:XCB18 ${ }^{\dagger}$	ecb	2867.62	0.0
ILT:Q18	EQuad	2950.26	61.14
ILT:Q19	EQuad	3630.74	61.14
ILT:YCB19 ${ }^{\dagger}$	ecb	3689.71	0.0
ILT:FC19 ${ }^{\dagger}$	fc	3778.00	0.0
ILT:XCB20 ${ }^{\dagger}$	ecb	3863.96	0.0
ILT:Q20	EQuad	3944.59	61.14
end sequence	marker	3978.43	0.0

Table 12: Sequence ilt_db13, the optics in the second half of the vertical section. ${ }^{\dagger}$ indicates approximate placement. All quadrupoles in this sequence use Wollnik integrals $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.087,0.004,0.031,-0.232)$.

1.10 Sequence ilt_db21.xml

This sequence consists of the achromatic bend section out of the vertical ILT section and into the ISAC experimental hall floor, with dimensions in Table 13 and a sketch drawing of the section shown in Figure 12.

Source			
sequence ilt_db21			
Design Drawing	Baartman sy.f		
Element Name	Element Type	Position s [mm]	Length $L[\mathrm{~mm}]$
start sequence	marker	0.0	0.0
ILT:VB21	yeb	203.15	199.49
ILT:Q21	EQuad	464.98	46.23
ILT:Q22	EQuad	534.82	33.53
ILT:RPM22	marker	611.18	0.0
ILT:Q23	EQuad	684.97	33.53
ILT:Q24	EQuad	754.81	46.23
ILT:VB24	yeb	1016.64	199.49
ILT:Q25	EQuad	1245.09	58.93
ILT:XCB25		ecb	1317.19
ILT:FC25	fc	1370.45	0.0
ILT:YCB26		ecb	1489.51
ILT:Q26	EQuad	1559.01	0.0
end sequence	marker	1588.48	0.0

Table 13: Sequence ilt_db21, the optics in the second half of the vertical section. \dagger indicates approximate placement. All quadrupoles in this sequence use Wollnik integrals $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.087,0.004,0.031,-0.232)$.

Figure 12: Sketch drawing ISK4210D-rev4.dwg, showing the final leg of the vertical ILT section, linking IMS and ISAC experimental hall floor level. Note 90° rotation of the reference frame.

1.11 Sequence ile_db1.xml

The section, shown in Figure 12 consists of an achromatic bend module in the horizontal plane in the ISAC experimental hall. It is located immediately downstream of the final ILT achromatic bend and allows beam to be transported toward the low energy section. Dimensions are shown in Table 14.
sequence ile_db1

Source		Baartman sy.f	
Design Drawing		Figure 12	
Element Name	Element Type	Position $s[\mathrm{~mm}]$	Length $L[\mathrm{~mm}]$
start sequence	marker	0.0	0.0
ILE:B1	eb	203.02	199.49
ILE:Q1	EQuad	464.87	48.44
ILE:Q2	EQuad	534.77	35.74
ILE:RPM2			
ILE:Q3	marker	611.37	0.0
ILE:Q4	EQuad	684.87	35.74
ILE:B4	EQuad	754.67	48.44
end sequence	marker	1180.07	199.49

Table 14: Sequence ile_db1, the optics in the first achromatic bend section int he ISAC experimental hall, transporting beam toward the low energy experimental area. ${ }^{\dagger}$ indicates approximate placement. All quadrupoles in this sequence use Wollnik integrals $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.087,0.004,0.031,-0.232)$.

1.12 Sequence ile_db5.xml

Sequence ile_db5 starts at the end of the first ILE achromatic bend module and ends at the location of movable bender ILE1:B1, which allows transport to either the ILE1 line to GRIFFIN or transport to Francium/TITAN/Polarimeter and associated experiments. The dimensions are shown in Table 15 and the section shown in Figure 13.
sequence ile_db5

Source		Baartman sy.f	
Design Drawing	Figure 13		
Element Name	Element Type	Position $s[\mathrm{~mm}]$	Length $L[\mathrm{~mm}]$
start sequence	marker	0.0	0.0
ILE:Q5	EQuad	44.08	61.14
ILE:XCB5	ecb	114.96	0.0
ILE:RPM5			
ILE:FC5	marker	fc	175.53
ILE:YCB6	ecb	231.97	0.0
ILE:Q6	EQuad	389.76	0.0
ILE:Q7	EQuad	571.80	0.0
ILE:RPM7	marker	726.58	61.14
ILE:Q8	EQuad	885.83	61.14
ILE:Q9	EQuad	1100.73	6.0
ILE:YCB9	ecb	1316.86	61.14
ILE:XCB10	ecb	1347.82	0.0
ILE:Q10	EQuad	1414.56	0.0
end sequence	marker	1543.36	61.14

Table 15: Sequence ile_db5, the optics in the straight section downstream of the first achromatic bend section in the ISAC experimental hall. ${ }^{\dagger}$ indicates approximate placement. All quadrupoles in this sequence use Wollnik integrals $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.087,0.004,0.031,-0.232)$.

Figure 13: Sketch drawing ISK4554D-rev2.dwg, showing the ILE optics segment transporting beam to the switchyard between ILE1 and ILE2 experiments.

1.13 Sequence ile_db11.xml

Sequence ile_db11 continues from the (open, unpowered) ILE1:B1, transporting beam toward Francium, TITAN and Polarizer. The sequence is shown in Figure 14 and recorded in Table 16.
sequence ile_db11

Source		Baartman sy.f	
Design Drawing		Figure 14	
Element Name	Element Type	Position $s[\mathrm{~mm}]$	Length $L[\mathrm{~mm}]$
start sequence	marker	0.0	0.0
ILE:Q11	EQuad/steer	531.08	61.14
ILE:Q12	EQuad	845.05	61.14
end sequence	marker	973.27	0.0

Table 16: Sequence ile_db11, the optics in the straight section downstream of the movable bender ILE1:B1, which when open and unpowered, transports beam toward ILE2. ${ }^{\dagger}$ indicates approximate placement. All quadrupoles in this sequence use Wollnik integrals $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.085,0.004,0.031,-0.232)$.

1.14 Sequence ile2_db1.xml

Lower leg of the ILE2/ILE2T switchyard, recorded in Table 17, shown in Figure 14.

Source			
sequence ile2_db1			
Design Drawing	Baartman sy.f		
Element Name	Element Type	Position $s[\mathrm{~mm}]$	Length $L[\mathrm{~mm}]$
start sequence	marker	0.0	0.0
ILE2:B1	eb	99.75	199.49
ILE2:Q1	EQuad	343.93	61.14
ILE2:XCB1	ecb	418.78	0.0
ILE2:FC1 ${ }^{\dagger}$	fc	535.20	0.0
ILE2:XCB2	ecb	555.94	0.0
ILE2:Q2	EQuad	663.97	61.14
end sequence	marker	707.57	0.0

Table 17: Sequence ile2_db1, transporting beam toward Polarizer. ILE2:B1 parameters in Table 6. ${ }^{\dagger}$ indicates approximate placement. All quadrupoles in this sequence use Wollnik integrals $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.085,0.004,0.031,-0.232)$.

Figure 14: Sketch drawing ISK4231D-rev11.dwg, showing the ILE optics segment transporting beam to the switchyard between ILE2, ILE2T experiments.

1.15 Sequence ile2_db3.xml

This sequence is the central node of the ILE2/ILE2T switchyard section from Figure 14, and terminates at the branching point between the horizontal beamline and the 45° diagonal beamline leg coming down from the TITAN RFQ cooler-buncher. Dimensions are recorded in Table 18.
sequence ile2_db3

Source		Baartman sy.f	
Design Drawing		Figure 14	
Element Name	Element Type	Position $s[\mathrm{~mm}]$	Length $L[\mathrm{~mm}]$
start sequence	marker	0.0	0.0
ILE2:Q3	EQuad	563.61	25.40
ILE2:Q4	EQuad	633.52	38.10
ILE2:Q5	EQuad	703.44	25.40
ILE2:Q6	EQuad	1121.10	25.40
ILE2:Q7	EQuad	1191.08	38.10
ILE2:Q8	EQuad	1260.90	25.40
end sequence	marker	1644.21 .27	0.0

Table 18: Sequence ile2_db3, transporting beam toward Polarizer. † indicates approximate placement. All quadrupoles in this sequence use Wollnik integrals $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(0.085,0.004,0.031,-0.232)$.

1.16 Sequence ile2_db9.xml

The final sequence in this report is the polarizer line proper, with dimensions shown in Table 19, which starts at the top right hand side of Figure 14 (Q9) and continues in Figure 15.

Source
Baartman sy.f

start sequence	marker	0.0	0.0
ILE2:Q9	EQuad	223.98	61.14
ILE2:YCB9	ecb	300.18	0.0
ILE2:RPM9			
ILE2:XCB10 †	marker	389.08	0.0
ILE2:Q10	ecb	465.28	0.0
ILE2:B10	eb	537.93	61.14
ILE2:XCB11	deflx	768.35	159.59

ILE2:RPM11 ${ }^{\dagger}$	marker	1158.78	0.0
ILE2:FC11			
ILE2:YCB11	fc	1209.58	0.0
ILE2:Q11	ecb	1265.34	0.0
ILE2:Q12	EQuad	1327.71	61.14
ILE2:Q13	EQuad	1859.88	61.14
ILE2:Q14	EQuad	2098.75	61.14
ILE2:Q15	EQuad	2187.67	61.14
ILE2:XCB15			
	ecb	2275.17	61.14
ILE2:YCB15			
	ecb	2326.63	0.0

ILE2:RPM15 ${ }^{\dagger}$	marker	2388.53	0.0
ILE2:BIAS15 ${ }^{\dagger}$	marker	2534.05	0.0
ILE2:RBCELL ${ }^{\dagger}$	marker	2690.03	0.0
ILE2:DEF15C ${ }^{\dagger}$	marker	3481.16	0.0
ILE2:FC15 ${ }^{\dagger}$	fc	4003.54	0.0
ILE2:HECELL ${ }^{\dagger}$	marker	4604.64	0.0
ILE2:Q16	EQuad	4905.28	61.14
ILE2:Q17	EQuad	4992.23	61.14
ILE2:RPM17X ${ }^{\dagger}{ }^{\dagger}$	marker	5064.95	0.0
ILE2:Q18	EQuad	5143.74	61.14
ILE2:Q19	EQuad	5233.25	61.14
ILE2:XCB19 ${ }^{\dagger}$	ecb	5313.31	0.0
ILE2:YCB19 ${ }^{\dagger}$	ecb	5365.96	0.0
ILE2:FC19 ${ }^{\dagger}$	fc	5429.94	0.0
ILE2:Q20	EQuad	5854.46	61.14
ILE2:YCB20 ${ }^{\dagger}$	ecb	5923.29	0.0
ILE2:XCB21	deflx	6101.27	55.88
ILE2:B21	eb	6419.82	159.59
ILE2A:Q2	EQuad	7172.11	61.14
ILE2A:YCB2 ${ }^{\dagger}$	ecb	7240.95	0.0
ILE2A:RPM2 ${ }^{\dagger}$	marker	7330.52	0.0
end sequence	marker	7330.52	0.0

Table 19: Sequence ile2_db9: The Polarizer beamline. ${ }^{\dagger}$ indicates approximate placement. All quadrupoles in this sequence use Wollnik integrals $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=$ (0.085,0.004,0.031,-0.232).

Figure 15: Sketch drawing ISK4231D-rev11.dwg, showing the polarizer sequence, terminating at location of ILE2A:RPM2.

2 Transport Tune

All reported dimensions are now in the acc-repository. The code xml2optr[3] has been used to generate TRANSOPTR files. Baartman's design tune for a 30 kV , charge state 1 beam is recorded in Table 20. Beam envelopes are shown in Figure 16.

Design IMS/ILT	
Element Name	Setpoint [V]
IMS:Q11	1422.0
IMS:Q12	1494.0
IMS:Q15	1187.0
IMS:Q16	1855.0
IMS:Q17	0.0
IMS:Q18	1177.0
IMS:Q19	865.0
IMS:Q20	1261.0
IMS:Q21	972.0
IMS:Q22	923.0
IMS:Q24	1027.0
IMS:Q25	1027.0
IMS:Q29	495.0
IMS:Q30	2325.0
IMS:Q31	1075.0
ILT:Q1	1027.0
ILT:Q2	142.0
ILT:Q3	612.0
ILT:Q4	2061.0
ILT:Q8	777.0
ILT:Q9	1027.0
ILT:Q12	1027.0
ILT:Q15	1027.0
ILT:Q20	495.0
ILT:Q21	2325.0
ILT:Q22	1075.0
ILT:Q26	495.0

Design ILE/LLE2

Element Name	Setpoint [V]
ILE:Q1	2325.0
ILE:Q2	1075.0
ILE:Q5	495.0
ILE:Q6	1227.0
ILE:Q7	689.0
ILE:Q9	1227.0
IE:Q10	1027.0
IE:Q11	1027.0
ILE:Q12	0.0
ILE2:Q1	0.0
ILE2:Q2	639.0
ILE2:Q3	2009.0
ILE2:Q4	1660.0
IE2:Q5	0.0
ILE2:Q11	327.0
ILE2:Q12	0.0
ILE2:Q13	0.0
ILE2:Q14	1192.0
ILE2:Q15	1167.0
ILE2:Q16	1985.0
ILE2:Q17	1605.0
ILE2:Q18	1605.0
ILE2:Q19	1985.0
ILE2:Q20	0.0

Table 20: Baartman's design tune, spanning exit of the ISAC mass separator (IMS:YSLIT11B), up to the end of the polarizer.

IMS
ILT
ILE
ILE2

Figure 16: Design transport tune from IMS:YSLIT11B up to end of ISAC Polarizer beamline for a 30 keV , charge state 1 beam. Quadrupole lattice is shown at the top of the figure in the form of the strengths. Transverse 4 rms containment ellipses are shown at the bottom of the figure. The lower left plot shows distribution at YSLIT11B, while the lower right figure shows the distribution at ILE2:RPM11, at the entrance of the polarizer.

3 Summary

This report documented the implementation of acc/-repository dimensions for the IMS to polarizer radioisotope transport beamlines. Listed dimensions throughout the report have been verified against TRANSOPTR files maintained by the Beam Physics Dept.

References

[1] Olivier Shelbaya. Model Coupled Accelerator Tuning (PhD thesis). Technical Report TRI-BN-23-04, TRIUMF, UVic Dept. of Physics \& Astronomy, 2023. https://dspace.library.uvic.ca/handle/1828/14804.
[2] B Hartmann, M Berz, and H Wollnik. The computation of aberrations of fringing fields of magnetic multipoles and sector magnets using differential algebra. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 297(3):343-353, 1990.
[3] Olivier Shelbaya and Paul M. Jung. Generation of TRANSOPTR files with xml2optr. Technical Report TRI-BN-22-06, TRIUMF, 2022.

Appendices

Appendix A fort.label for IMS-Polarizer

```
#s [mm] Element Centrepoint
O YSLIT11B
151.83 IMS:Q11
228.03 IMS:Q12
591.24 IMS:Q12
669.98 IMS:Q11
1012.89 IMS:FC14
1112.89 IMS:RPM14
1974.27 IMS:Q15
2063.16 IMS:Q16
2215.53 IMS:Q17
2304.42 IMS:Q18
2642.46 IMS:RPM18
2865.67 i
2915.54 .
2965.41 IMS:B18
3015.28 .
3065.16 .
3065.16 x
3407.82 IMS:FC19
3529.19 IMS:Q19
3794.29 IMS:Q20
3934.83 IMS:LPM20
4108.39 IMS:Q21
4863.35 IMS:Q22
5052.62 IMS:RPM22
5177.4 IMS:Q23
5858.4 IMS:Q24
6048.42 IMS:RPM24
6172.55 IMS:Q25
6854.13 IMS:Q26
7168.1 IMS:Q27
7848.68 IMS:Q28
```

```
8162.65 IMS:Q29
8292.27 i
8342.15 .
8392.02 IMS:B30
8441.9 .
8491.77 .
8491.77 x
8653.08 IMS:Q30
8722.93 IMS:Q31
8798.77 IMS:RPM31
8870.76 IMS:Q32
8940.61 IMS:Q33
9104.26 i
9154.14.
9204.01 IMS:B33
9253.89 .
9303.76 .
9303.76 x
9431.84 IMS:Q34
9553.82 IMS:LPM34
9629.66 IMS:FC34
9745.79 IMS:Q35
10426.3 IMS:Q36
10740.2 IMS:Q37
11386.9 ILT:Q1
11575.5 ILT:RPM1
11700.8 ILT:Q2
11828.7 i
11878.6 .
11928.4 ILT:VB3
11978.3.
12028.2 .
12028.2 x
12192 ILT:Q3
12261.8 ILT:Q4
12363.3 ILT:RPM4
12409.7 ILT:Q5
12479.5 ILT:Q6
12643.4 i
12723.1 ILT:VB6
12802.8.
```

```
12802.8 x
13037.2 defx
13045.9 ILT:RPM7
13128.2 ILT:FC7
13284.5 ILT:Q8
13965.3 ILT:Q9
14279.2 ILT:Q10
14959.6 ILT:Q11
15273.6 ILT:Q12
15954.4 ILT:Q13
16268.3 ILT:Q14
1 6 9 4 9 ~ I L T : Q 1 5 ~
17032.2 ILT:LPM15
17263 ILT:Q16
17943.4 ILT:Q17
18088.8 ILT:RPM17
18257.6 ILT:Q18
18938.1 ILT:Q19
19085.4 ILT:FC19
19252 ILT:Q20
19389.2 i
19439.1.
19489 ILT:VB21
19538.8 .
19588.7 .
19588.7 x
19750.8 ILT:Q21
19820.6 ILT:Q22
19897 ILT:RPM22
19970.8 ILT:Q23
20040.6 ILT:Q24
20202.7 i
20252.6 .
20302.4 ILT:VB24
20352.3.
20402.2 .
20402.2 x
20530.9 ILT:Q25
20656.3 ILT:FC25
20844.8 ILT:Q26
20977.5 i
```

```
21027.4.
21077.3 ILE:B1
21127.2 .
21177.
21177 x
21339.1 ILE:Q1
21409 ILE:Q2
21485.6 ILE:RPM2
21559.1 ILE:Q3
21628.9 ILE:Q4
21791 i
21840.9 .
21890.8 ILE:B4
21940.7.
21990.5 .
21990.5 x
22098.4 ILE:Q5
22229.9 ILE:RPM5
22286.3 ILE:FC5
22412.4 ILE:Q6
22626.1 ILE:Q7
22780.9 ILE:RPM7
22940.2 ILE:Q8
23155.1 ILE:Q9
23468.9 ILE:Q10
24128.8 ILE:Q11
24442.7 ILE:Q12
24571 i
24620.8 .
24670.7 ILE2:B1
24720.6 .
24770.5 .
24770.5 x
24920.9 ILE2:Q1
25052.7 ILE2:RPM1
25106.2 ILE2:FC1
25234.9 ILE2:Q2
25842.1 ILE2:Q3
25912 ILE2:Q4
25982 ILE2:Q5
26399.6 ILE2:Q6
```

```
26469.6 ILE2:Q7
26539.4 ILE2:Q8
27146.7 ILE2:Q9
27311.8 ILE2:RPM9
27460.7 ILE2:Q10
27611.3 i
27691.1 ILE2:B10
27770.9 .
27770.9 x
28009.6 defx
28081.5 ILE2:RPM11
28132.3 ILE2:FC11
28250.4 ILE2:Q11
28782.6 ILE2:Q12
28869.5 ILE2:Q13
29021 ILE2:Q14
29110.4 ILE2:Q15
29311.3 ILE2:RPM15
30926.3 ILE2:FC15
31828 ILE2:Q16
31915 ILE2:Q17
31987.7 ILE2:RPM17X
31987.7 ILE2:RPM17Y
32066.5 ILE2:Q18
32156 ILE2:Q19
32352.7 ILE2:FC19
32777.2 ILE2:Q20
33024 defx
33262.8 i
33342.5 ILE2:B21
33422.3 .
33422.3 x
33720.6 ILE2A:FC2
34094.8 ILE2A:Q2
34253.3 ILE2A:RPM2
```

