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Abstract: This report details a step-by-step procedure to manually expand the
Hamiltonian for a Radiofrequency Quadrupole (RFQ) linear accelerator to second
order, largely following that which was done for the axially symmetric linac by
Baartman. This technique is applied using the well known 2-term RFQ potential
expansion, defined in terms of the vane parameters. The F-matrix, or infinitesimal
transfer matrix, describes the point-to-point connection of the beam matrix un-
dergoing a differential step ds along the Frenet-Serret orbit through the structure.
This is essential for the computation of the linear optics about the accelerating
reference particle.
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Preface

The present procedure closely follows that developed for an axially symmetric linac [1].
Our goal is to produce a Hamiltonian with separated transverse and longitudinal variables,
which will allow computation of the F-matrix needed for TRANSOPTR implementation of an
RFQ. This procedure may be accomplished in three steps. First, we perform two successive
canonical transformations to render coordinates 5 and 6 suitable for use with TRANSOPTR.
Secondly, we perturb time and energy around the reference particle, rendering these varia-
tions within an RFQ bunch explicit. Finally, the two-term RFQ potential will be separated
into two separate components: a purely longitudinal one along with a mixed transverse-
longitudinal term, which will allow for the expansion of the Hamiltonian, to second order.

Introduction

The generalized s-based Hamiltonian, in absence of vector potentials may be written:

H(x, Px, y, Py, t, E) =

√(
E − qΦ

c

)2

−m2
0c

2 − P 2
x − P 2

y (1)

the total momentum of a charged reference particle within an electric field with scalar po-
tential Φ may be written:

P0 =

√(
E − qΦ

c

)2

−m2c2 (2)

In the case of an RFQ, we note the two term scalar potential [2]:

Φ(x, y, s, t) =

[
A01

V0
2

(x2 − y2) +A10
V0
2

cos(kz)I0(k
√
x2 + y2)

]
sin(ωt+ θ) (3)

the parameters A01 and A10 define RFQ quadrupole focussing and acceleration, respectively,
with given vane voltage V0, RFQ design wavenumber k, aperture a and modulation factor m:

A01 =
1

a2
I0(ka) + I0(mka)

m2I0(ka) + I0(mka)
(4)

A10 =
m2 − 1

m2I0(ka) + I0(mka)
(5)

that is, the two term potential expansion is separated into a transverse focussing term,
defined by the (x2 − y2) contribution and a longitudinal accelerating term whose radial
fall-off is represented with I0(r), the modified Bessel function of the first kind. The scale
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of the transverse dimensions in an RFQ make clear that the potential will be dominated by
the longitudinal accelerating term. Typically apertures are on the order of 1cm while the
length is several meters. We also note that the transverse focussing term has no explicit s
dependance.

Canonical Transformations to (z, Pz)

The Hamiltonian (1) is written with canonical coordinates 5,6 expressed as (t,−E),
but since it is desired to work with the coordinate pair (−βc∆t,∆E/(βc)), in line with
TRANSOPTR, two successive canonical transformations must be performed upon the Hamil-
tonian, first transforming them to (−∆t,∆E), where ∆t is negative, since an early particle
arrives before the reference particle. The generating function that accomplishes this is [3]:

G1 = −

(
t−
∫

ds

βc

)(
∆E + E0

)
(6)

The partial derivative ∂G1/∂s is added to the Hamiltonian (1). The generating function
G1 produces the Hamiltonian-added terms:

∂G1

∂s
=

∆E + E0(s)

βc
−∆t

dE0

ds
(s) (7)

Next, we transform once more from (−∆t,∆E) to (−βc∆t,∆E/(βc)), accomplished by
using a second Hamiltonian generating function [3]:

G2 = −βc∆tPz (8)

The full canonical transformation is accomplished by adding the partial derivatives of
both generating functions G1 and G2 to the Hamiltonian Hs, replacing explicit (∆t,∆E)
dependency by (−βc∆t,∆E/(βc)) = (z, Pz), the definitions for coordinates 5 and 6 as im-
plemented in TRANSOPTR.

Perturbation About the Reference Particle

The desired perturbation in time and energy is obtained by allowing:

t −→ t0 + ∆t (9)

E −→ E0 + ∆E (10)
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where the subscript 0 will denote the reference particle from here on. The first conse-
quence may be found in the sinusoidal time-dependence, which after manipulation becomes:

sin(ω(t0 + ∆t) + θ) =

(
1− (ω∆t)2

2

)
S0 + (ω∆t)C0 (11)

where ω∆t � 1. For conciseness, we introduce the notation S = S(t) = sin(ωt + θ)
and C = C(t) = cos(ωt+ θ). The quantities S0 = S(t0) and C0 = C(t0) correspond to the
reference particle’s time coordinate.

Longitudinal Isolation and Hamiltonian Expansion

We now look back at the general two-term RFQ potential:

Φ(x, y, s, t) =
V0
2

[
A10 cos(ψ)I0(kr) +A01

(
x2 − y2

)]
sin (ωt+ θ) (12)

r =
√
x2 + y2 (13)

As written above, the potential Φ(x, y, s, t) lacks a purely longitudinal component. The
set of second partial derivatives that compose the F-matrix in either of (x, y, s, t) will render
the computation more difficult, particularly in presence of the square root expression in
Eq. (13), which is the sole explicit, transverse-longitudinal dependence in the potential Φ.
Should the Bessel function be approximated to first order, we will obtain a pure longitudinal
component. The expansion of I0(kr) about r = 0 is:

I0(kr) = 1 +
k2

4
(r2) +O(r4), (14)

then we write the potential function Φ(x, y, s, t) as:

Φ(x, y, s, t) =

(
φ(s) + T (x, y, s)

)
S(t) (15)

where

φ(s) =
A10V0

2
cos(ψ), (16)

and
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T (x, y, s) =

(
A01V0

2
(x2 − y2) +

A10V0k
2 cos(ψ)

8
(x2 + y2)

)
(17)

Expanding the Bessel function has allowed us to separate the potential into a purely
longitudinal component φ(s), in addition to a transverse-dependant term T (x, y, s). For
clarity and conciseness, φ(s) and T (x, y, s) shall be denoted φ and T from here on. We
observe that φ depends only on the accelerating efficiency A10 and the accumulation of lon-
gitudinal spatial phase ψ. Meanwhile, the first term in Eq. (17) represents the quadrupole
contribution with (x2 − y2), featuring the transverse focusing parameter A01. The second
term in T contributes to acceleration thanks to its A10 and ψ(s) dependence, with radially
increasing amplitude. The former encodes a well-known feature of RFQ accelerators, in
which the accelerating electric field is stronger off-axis. Due to the second-order truncation,
the validity of this analysis is bounded for coordinates where (x, y) � s. Substituting the
potential Φ from Eq. (15) in the expression for the modified canonical energy:

(
E − qΦ(x, y, s, t)

c

)
=

(
E − qφS(t)− qTS(t)

c

)
(18)

The above is then squared as it appears in the Hamiltonian of Eq. (1). After some ma-
nipulation, the result may be expressed as:

(
E − qφS(t)

c

)2

− 2qTS(t)

c

(
E − qφS(t)

c

)
+O(x4, y4) (19)

Terms of fourth order in (x, y) are small and neglected from here on since they do
not contribute to the linear optics. With this done, the remainder of Eq. (19) is now purely
expressed in terms of the longitudinal component φ(s), while a mixed transverse-longitudinal
first order contribution remains as a perturbation. We may now insert this, together with
the partial derivative terms from the generating functions of Eqs. (6) and (8) into the of
Eq. (1):

Hs =
∂G1

∂s
+
∂G2

∂s
−

√√√√(E − qφS(t)

c

)2

− 2qTS(t)

c

(
E − qφS(t)

c

)
−m2

0c
2 − P 2

x − P 2
y (20)

The Hamiltonian must now be expanded, which will render the F-matrix computation
more straightforward. First, from the square root term in Eq. (20), it is now possible to
extract a quantity that we identify as the time and energy perturbed total momentum:

HS =
∂G1

∂s
+
∂G2

∂s
− P

√
1−

P 2
x + P 2

y

P 2
(21)
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with:

P =

√√√√(E + ∆E − qφS(t+ ∆t)

c

)2

− 2qTS(t+ ∆t)

c

(
E + ∆E − qφS(t+ ∆t)

c

)
−m2

0c
2

(22)

The time expansion of S(t) was noted in Eq. (11) which, together with the energy expan-
sion are inserted into the total momentum expression of Eq. (22), which grows considerably.
Terms are however truncated to second order 1 in ∆t and ∆E. After manipulation and
simplification, the momentum expression becomes:

P =

√√√√(E0 − qφ(s)S0

c

)2

− 2qTS0

c

(
E0 − qφS0

c

)
−m2

0c
2 + ε (23)

with perturbation parameter:

ε = 2E0

(
∆E +

1

2
qφ(s)(ω∆t)2S0 − qφ(s)(ω∆t)C0

)
+ ∆E

(
∆E − 2qφS0 − 2qφ(ω∆t)C0

)
+ q2φ(s)2(ω∆t)

(
(ω∆t)(C2

0 − S2
0) + 2C0S0

)
. (24)

A reference momentum may now be extracted from Eq. (23):

P = P0

√√√√1− 2qTS0

cP 2
0

(
E0 − qφS0

c

)
+

ε

P 2
0

(25)

where:

P0 =

√√√√(E0 − qφS0

c

)2

−m2
0c

2 (26)

The reference momentum in Eq. (26) depends only on the longitudinal component of the
potential, and carries the normal relativistic definition P0 = βγm0c. This is expected, as
the reference particle is assumed to be perfectly synchronous (∆t = ∆E = 0) and on-axis
(x = y = 0), where the transverse potential components are zero. The total momentum in
Eq. (25) may itself be expanded to second order:

1This means up to ∆t2, ∆E2 or ∆t∆E.
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P ≈ P0

(
1− qTS0

cP 2
0

(
E0 − qφS0

c

)
+

ε

2P 2
0

− ε2

8P 4
0

)
. (27)

With this, the Hamiltonian of Eq. (21) can now be expressed as:

Hs =
∂G1

∂s
+
∂G2

∂s
− P0 −

ε

2P0
+

ε2

8P 3
0

+
qTS0

cP0

(
E0 − qφS0

c

)
+
P 2
x + P 2

y

2P
. (28)

We observe that the terms in Px and Py in Eq. (28) are scaled by the momentum P ,
which is approximated as P0. This transverse momentum approximation will only be cor-
rect near-axis, where higher order terms are negligeable. The generating function terms are
explicitly substituted in the Hamiltonian of Eq. (28). The second term in the contribution
of G1 from Equation (6) may be found by evaluating one of Hamilton’s equations:

∂G1

∂s
=

(
∆E + E0

βc

)
− qφω∆t

cP0

(
E0 − qφS0

c

)
C0 (29)

The contribution from the G2 term from Equation (8) is:

∂G2

∂s
= −β

′

β
∆t∆E (30)

This procudes the final, second order, s−independent Hamiltonian for a two-term RFQ
potential field, which is found by explicitly writing the generating functions (29) and (30),
in addition to the the perturbation polynomial ε of Eq. (24) in the Hamiltonian (28), then
re-arranging terms and substituting the quantities (βc∆t, ∆E/(βc)) = (z, Pz). Finally, the
separated potential terms φ(s) and T (x, y, s), from Eqs. (16) and (17) are explicitly written,
producing to second order:

Hs =

(
E0

βc
− P0

)
+
P 2
x

2P0
+
P 2
y

2P0
+

P 2
z

2γ2P0
+
T1(s)

2
x2 +

T2(s)

2
y2 + B(s)zPz +

C(s)
2
z2 (31)

with:

T1(s) =
qV0
4βc

(
4A01 +A10k

2 cos(ψ)

)
sin(ωt0 + θ) (32)

T2(s) =
qV0
4βc

(
− 4A01 +A10k

2 cos(ψ)

)
sin(ωt0 + θ) (33)
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B(s) =
qV0A10

2β2γ3mc2

(
ω

βc
cos(ψ) cos(ωt0 + θ) + k sin(ψ) sin(ωt0 + θ)

)
(34)

C(s) =
A10ω

2 cos(ψ)

4β5γ3mc5

(
q2V 2

0 A10 cos(ψ) cos(ωt0 + θ)2 − 2qV0β
2γ3mc2 sin(ωt0 + θ)

)
(35)

The perturbation and expansion procedure has allowed us to remove all square root
dependencies and has also separated transverse and longitudinal coordinates, rendering the
evaluation of second partial derivatives much easier. Thus, obtention of the F-matrix for
the RFQ is simply a matter of evaluating second order partial derivatives with respect to
each of the canonical coordinates upon the Hamiltonian (31). It is expressly reiterated that
the coordinate z is not equivalent to s. Rather, the canonical pair are (t− t0,E−E0) or (∆t,
∆E), not (l,∆P/P ). The reason choosing the latter usually works is by applying a trick:
If we scale by β0c, we can make them match the proper canonical choice, since β0c∆t = z,
and in magnetic elements, ∆E/(β0c) = ∆P , but this is only true of magnetic elements, and
leads the analysis astray when there are electric fields. We use this same trick because then
coordinate 6 only deviates from the usual ∆P/P in regions where electric potential Φ = 0.
Further, the coordinate 5 is not ”path length difference” as stated by Brown in [4], but the
time difference with respect to the reference particle, scaled by the reference particle’s speed.

RFQ F-Matrix

Evaluating the set of second partial derivatives of the Hamiltonian (31), one obtains the
2-term RFQ F-matrix:

F2(s) =



0 1
P0

0 0 0 0

T1(s) 0 0 0 0 0

0 0 0 1
P0

0 0

0 0 T2(s) 0 0 0

0 0 0 0 B(s) 1
γ2P0

0 0 0 0 C(s) −B(s)


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The above provides TRANSOPTR with a complete description of an RFQ, as described by
a 2-term potential expansion. A distinct advantage of the two-term potential lies with the
focusing and accelerating terms, A10 and A10, respectively. These standard RFQ parame-
ters may easily be computed directly from the vane aperture and modulation parameters,
in addition to the design wavenumber. Thus, by simply providing a mapping of (s, a,m, k)
in the form of an ascii-formatted input file, TRANSOPTR will provide a near-axis description
of RFQ dynamics.
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