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Abstract: This document is intended as an overview of the current status of de-
velopment of model coupled accelerator tuning (MCAT) at ISAC. The TRANSOPTR

model of the linac is briefly presented. Thanks to python wrapping of TRANSOPTR’s
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the accelerator, using only starting beam distributions at designated locations in
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TRANSOPTR [1, 2] (optr) now simulates OLIS-HEBT [3, 4]1,2, includ-
ing RFQ [6, 7] and DTL [8]
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Figure 1: Top: OLIS (mws) to MEBT:FC5 composite 2rms envelope. ISAC-prebunching not
yet implemented, reserved for later. Can tune through RFQ without it. Bottom: ISAC-DTL
simulation for full E/A acceleration.

1These citations also contain documentation on the original tunes that were used at ISAC, mainly in the code Trace3D.
2Note that the ISAC-II beamlines are implemented and documented in [5]. Implementation of the SCRF in TRANSOPTR

is carried out by S. Kiy, TRIUMF Beam Delivery Grp.
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Aside: Tuning the ISAC-Prebuncher & RFQ On-Line
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Figure 2: The prebuncher operates on an up to 400 V peak-to-peak waveform to induce a lon-
gitudinal density modulation. In practice, the OLIS to MEBT tune from Fig. 1 is first established
with the prebuncher off. Once the RFQ has been configured, the composite waveform shown in
the figure is tuned by operators manually for transmission. New prebuncher electronics (installed
2019) render this process more reproducible.
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Figure 3: Operationally, the RFQ amplitude can be found using the cutoff test. The operator ramps
down the RFQ voltage until transmission through the linac hits zero. The vane voltage producing
this condition is divided by 0.9, producing the correct RFQ amplitude for optimum acceleration.
This behavior is known from on-line tuning, has been simulated in PARMTEQ [9] and is also present
in TRANSOPTR, shown above for an A/q=30 beam. On the left, the energy vs. vane voltage relation-
ship is shown. To the right, the longitudinal (z) envelopes for the same A/q, at various voltages,
demonstrate the loss of longitudinal bunch coherence with diminishing voltage, a proxy for trans-
mission loss through the linac.
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Python wrapping of TRANSOPTR allows writing of procedural tune
optimization software [10].
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Figure 4: MCATSequencer, written in python, calls upon TRANSOPTR to perform long sequential
tune optimizations, provided pre-coded constraints to the σ-matrix. This software is intended to
demonstrate the advantage of cutting up tune optimizations into small subsections of 4-6 optimiza-
tion variables, such as quadrupole voltages. Tune optimizations shown here take approximately 60
seconds start to end. Also shown in this image is the variable prebuncher spot focus at ILT:RPM37,
which can be defined via MCATSequencer prior to tune optimization.
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Figure 5: MCATSequencer can also perform tune optimizations for the MEBT-DTL-HEBT section,
notably including the setting of ISAC-DTL RF cavities amplitude and phase. These examples
show drifting (E/A = 0.153 MeV/u) optimizations through the DTL, which operators establish
prior to enabling RF acceleration.
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The TRANSOPTR-DTL has been calibrated with beam
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Figure 6: Beam based testing using a 16O4+ beam were performed for the ISAC-DTL. These
TRANSOPTR simulations of longitudinal acceleration are based upon Opera-2D static electric field
maps of the ISAC-DTL [8]. As a refinement, a CST-MWS simulation of the linac is being performed
in collaboration with IAP-Frankfurt. Measurement credit: T. Angus, S. Kiy, J. Lewis, S. D. Rädel and
O. Shelbaya
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Figure 7: Calibrations obtained between EPICS RF cavity scaling factor and TRANSOPTR on-axis
electric field scaling parameter, using the same 16O4+ beam shown in Fig. 6. These calibra-
tions now mean we can perform TRANSOPTR tune optimizations that will return an RF cavity
amplitude that can directly be input to the control system. As there is growing evidence of
phase instabilities and a non one-to-one correspondence between RF degrees and physical
degrees (400◦ RF ∼ 360◦ optr), phasing will have to be done manually on-line.
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Spectral Autofocusing of the ISAC-DTL

Cavity E/A [MeV/u] MCAT-sequence
Tank-1 0.253 1a,1b,1c,1d,1e
Tank-2 0.461 1a,1b,2a,2b,2c,2d
Tank-3 0.781 1a,1b,2a,2b,3a,3b,3c
Tank-4 1.150 1a,1b,2a,2b,3a,3b,4a,4b
Tank-5 1.530 1a,1b,2a,2b,3a,3b,4a,4b,5a

Figure 8: The ISAC-DTL model can be automatically focused at any point in its output
energy spectrum using MCAT. Here, the ISAC-DTL autofocusing procedure that is executed by
MCATSequencer is graphically shown. In the plot, as in life, color implies energy. DTL output E/A is
achieved by sequential MCAT execution as shown in the table above. Each labeled step represents
a TRANSOPTR optimization, which is enabled thanks to pre-coded constraints built into the model.
Specifically, these are located in the acc/-XML repository (gitlab.triumf.ca/hla/acc) and are included
in the TRANSOPTR file sy.f at execution. Intermediate energies are achieved by detuning the last
necessary tank, with all previous tanks configured to design, again using optr’s optimizer. Devices
in red are untouched by MCATSequencer. Downstream optics are also optimized after the fact.
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Modelling Summary

1. There is now an end-to-end TRANSOPTR model of the ISAC-I linac, starting at OLIS.

2. Development of TRANSOPTR has added an RFQ capability

3. The ISAC-DTL implementation in TRANSOPTR has had its output energy versus phase re-
sponse been verified with beam

4. Development of python wrapped software (MCATSequencer) allows for start-to-end machine
tune optimizations.

5. This notably includes an energy independent automatic transverse focusing procedure for
the ISAC-DTL.

Quadrupole Scan Tomography

Figure 9: Scanning a quadrupole on a position monitor (RPM/LPM) allows for the use of a to-
mographic reconstruction method (Maximum Entropy Tomography/MENT) [11] to reconstruct the
beam distribution on-line, at the entrance location of the quadrupole. This means we can carry out
emittance measurements where dedicated emittance rigs are unavailable.
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Quadrupole scans at OLIS
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Figure 10: OLIS quadrupole scans of IOS:Q7 on IOS:RPM8, producing the x-transverse distribu-
tion at IOS:MCOL3A. These examples have been chosen since they show two of the main
challenges with such measurements. On the left, the input RPM data includes noise on ei-
ther side of the peak. MENT interprets this as additional structure during the tomographic
procedure, resulting in the appearance of filaments in the reconstruction. These act to
broaden the 2rms distribution and contaminate the extraction of starting beam parameters.
On the right, the MENT algorithm has improperly converged on the fit data, which usually
implies that transmission has been lost during the quadrupole scan. When this is encoun-
tered on-line, corrective steering must be performed to ensure the entire quadrupole scan
can be done with minimal centroid displacement on the RPM.



TRI-BN-21-07 Page 10

MCAT with TRANSOPTR On-Line at IOS-RFQ
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Figure 11: MCAT practice run at OLIS (MCAT#3, Nov 18, 2020). The measured on-line beam
distribution at IOS:MCOL3A is fed to MCATSequencer, which computes the ILT tune, using the
constraints upon the beam matrix that are encoded in the acc/ database. RPMs are scanned along
the line and their 2rms (x, y) sizes and beam centroid offsets are plotted. Note increasing error
with 2rms size, evidencing a mismatch condition. Also observe strong steering (centroid
offsets), which was necessary to obtain high transmission (>90%).
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Observation 1: Beams from OLIS do not appear to conform to our (Beam Physics Group)
assumptions. Moreover, since there are no beam position monitors prior to
IOS:RPM8, there are little signals to optimize other than transmission around
the dipole (IOS:MB). This often leads to abnormal/anomalous configurations for
the source [12]. Additionally, consistent y-steering into and out of the dipole
suggests a potential dipole or beamline misalignment at OLIS.

Observation 2: There is a strong and persistent need for both vertical and horizontal steering
out of OLIS, in particular at the locations of IOS:XCB8 and IOS:YCB9.

Observation 3: Configuring the spherical benders (IOS:B10, B13, ILT:B43, B46) to their theoret-
ical setpoints generally produces below optimal transmission through the ILT
line. It is frequently found that the spherical benders must be operated at 100
to 200 volts above their predicted setpoints. It is also observed that there has
been no inspection of the alignment of the bender electrodes proper for several
years.

Observation 4: There is a strong need for vertical corrective steering in the ILT section, partic-
ularly in the prebuncher line. This can be understood as a consequence of the
prebuncher’s aperture constraint, though it also evidences that we generally
have off-axis beams by the time we exit the OLIS line.

Observation 5: From the location of ILT:RPM37 (prebuncher) onward, a mismatch consis-
tently appears in the measured on-line tune. This has been seen on several
MCAT beam development occasions thus far. Though some of this can be at-
tributed to the tomographic procedure, the agreement with IOS:RPM8, RPM11
and ILT:RPM33 suggests a beam that is under control until the exit from the
first achromatic bend. The optics of the ILT section should be scrutinized
and inspected for things like missing skimmer electrodes, improper or poorly
grounded connections, or any other abnormality. The dual triplets around the
prebuncher appear to be the initiation location of this mismatch.

Observation 6: A further mismatch is consistently observable beyond the second achromatic
bend. In particular, beam behavior on-line around quadrupoles ILT:Q47, Q48,
Q49, Q50, IRA:Q1, up to IRA:RPM1 does not agree with the model. These
should be scrutinized. The behavior appears distinct from the suspected is-
sues around the prebuncher.

Observation 7: The above listed observations render injection in the ISAC-RFQ from a model
computed tune unpracticable. Manual tuning is instead required.
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MCAT: MEBT & DTL Drift
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Figure 12: Quadrupole MEBT:Q5 is scanned on MEBT:RPM5. The tomographic reconstruction
is configured as to produce the σ-matrix for (x, Px) and (y, Py) at the exit of the ISAC-RFQ, at a
point chosen to overlap the historic start point of Trace3D simulations [3].
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Figure 13: The reconstructed distribution from Fig. 12 was used in the TRANSOPTR model to sim-
ulate drifting through the DTL using an operational tune and was compared with a beam profile
measurement at HEBT:RPM5. A transmission of 89% was recorded [13].
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Figure 14: The reconstructed distribution from Fig. 12 was used for an MCAT optimization on-line,
as a verification of beam control up to MEBT:RPM5.
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Figure 15: Using the distribution from Fig. 12, MCAT was used to optimize the full MEBT line, up
to DTL injection. A transmission of 100% was recorded, though heavy steering intervention was
required in the line. Difficulties operating LPMs and processing their data precluded beamsize
extraction during this particular run, Nov. 11, 2020.
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Figure 16: An on-line distribution, similar to that shown in Fig. 12, was used for a full MEBT-DTL-
HEBT MCAT optimization. Recorded DTL Transmission was 60%.



Figure 17: Top-left: DTL:LPM0, Top-right: DTL:LPM3, Bottom: DTL:LPM6. MCAT-DTL tunes
computed together with the MEBT section frequently lead to profile degradation through the ma-
chine, in addition to transmission loss. Extraction of LPM signals is not straightforward from EPICS,
so the traces are shown here unnormalized for qualitative inspection. Ongoing development aims
to produce an HLA compatible output for LPMs, in collaboration with the Controls Group.



Steering in the MEBT Section [14] Since 2000

Figure 18: RIB Operations savetune extracted y-steering values, dating back to 2000.



Figure 19: Evidence of floor slab stress and potential shifting in the ISAC-I experimental hall.
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Figure 20: Removal of corrective steering from operational tunes causes a centroid shift on
MEBT:RPM5 as shown.

Observation 8: MCAT optimized MEBT tunes produce high transmission, after steering interven-
tion in the line. This generally includes MEBT:YCB7A/7B set to values up to
±100A, the P/S limit.

Observation 9: Operationally, the MEBT dipoles are not set to the beam rigidity (Bρ). Instead,
they are generally set roughly 10 A above the expected current and both are
manually tuned by operators. This manual tuning also involves the use of
YCB7A/7B.

Observation 10: MCAT computed MEBT-DTL-HEBT tunes suffer transmission loss through the
(unpowered, E/A = 0.153 MeV/u) DTL, with usually no more than 50% measur-
able on HEBT:FC5.

Observation 11: MCAT computed DTL-HEBT drifting tunes which make use of previously saved
operational values for MEBT were found to produce between 89 to 92% trans-
mission through the DTL (from MEBT:FC9 to HEBT:FC5) during tests in summer
2020.

Observation 12: Operational MEBT tunes make use of manually defined Q1 to Q5 values [15].



Beam Development Summary

1. Familiarity was gained with using quadrupole scan tomography on-line

2. Extracted tomographic distributions fed TRANSOPTR simulations and optimizations of both the
OLIS-RFQ-MEBT, in addition to MEBT-DTL-HEBT sections.

3. Only drifting DTL tunes were performed to investigate transverse envelope issues through
DTL.

4. Attempts to compute full MCAT tunes through both ILT and MEBT-DTL produce transmission
issues which appear to arise from disagreement between the TRANSOPTR model and the on-
line optics.

5. Considerable steering in OLIS, ILT and MEBT appear to suggest beamline axis alignment
issues.

6. DTL Transmissions of roughly 60% were obtained for MCAT tunes for MEBT-DTL-HEBT with-
out DTL acceleration and beam profiles in the linac were found to diverge from the expected
behavior.

7. Consistent and heavy y-steering around the MEBT dipoles (MB1 and MB2), together with
manual tuning of the dipoles away from the beam rigidity value appears to suggest a dipole
misalignment issue in MEBT.

8. Obtention of a high DTL transmission (>90%) using an operational MEBT tune together with
an MCAT computed DTL tune further suggests that on-line detuning of the section compen-
sates for unwanted/unexpected optical effects in MEBT.

Modelling Summary (Repeated)

1. There is now an end-to-end TRANSOPTR model of the ISAC-I linac, starting at OLIS.

2. Development of TRANSOPTR has added an RFQ capability

3. The ISAC-DTL implementation in TRANSOPTR has had its output energy versus phase re-
sponse been verified with beam

4. Development of python wrapped software (MCATSequencer) allows for start-to-end machine
tune optimizations.

5. This notably includes an energy independent automatic transverse focusing procedure for
the ISAC-DTL.
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