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Introduction

I intend this document to serve as a quick reference for new users to TRANSOPTR, myself
having become more familiar over the past three years. This is not an in-depth overview of
the theory behind TRANSOPTR’s (optr’s) physics or operating principles, which can be found
in the literature, including [1, 2, 3, 4]. Unlike commercial codes who offer an easy to use
visual interface, TRANSOPTR has by both its nature and history remained entirely interface
free. This imposes upon the beginner a steeper learning curve and also requires familiarity
with Unix-like operating systems.

On the other hand, its spartan nature means users are able to customize it as they see fit,
and expand it if necessary. While the learning curve for optr is quite steep, the proficient
user has at his disposal a tool which is equally lightweight as it is powerful. The absence
of complicated user-experience driven interfaces makes the code particularly versatile and
has undoubtedly allowed for its continued development and relevance over the last 40 years
at TRIUMF, since the original inception at Chalk River Nuclear Laboratories.

Finally, it is emphasized that TRANSOPTR is written in FORTRAN. Consequently the user should
be aware of variable naming conventions in the code and in particular the sensitivity be-
tween real (floats) and integers. Starting variable names with certain letters also implicitly
assigns the variable type, so caution should be exercised.

Local TRANSOPTR Installation

There are two ways to use optr: old-school and HLA; this document covers the former.
For the record, the HLA (high-level application) use of TRANSOPTR requires access to and
configuration of the TRIUMF gitlab service on the local filesystem, which can be obtained
via the TRIUMF HLA team. TRANSOPTR’s source is in FORTRAN and a proposed installation
consists of the following:

Figure 1: Default TRANSOPTR installation. Note that I’m showing the git-controlled version, which I
just said we weren’t discussing. The installation is identical in either cases.

A tarball with the above can be obtained upon request from the TRIUMF Beam Physics
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group. optr has the following dependencies:

gnuplot

gfortran

getopt

For Mac users:

‘xcode-select --install‘

‘xcodebuild -license‘

An optr environment variable should be defined. As an example, on a bash shell in .bashrc:

OPTRDIR=/path/to/transoptr/directory

export OPTRDIR

It should then be possible to run optr from the command line by defining an alias:

alias optr=$OPTRDIR/runoptr.sh

Note that running optr with the flag -c re-compiles all of the source code (then runs it). The
source files are found in the subdirectory src/ shown in fig. 1. On first execution, you must
use -c, same if you’ve modified the source code: you’ll need to compile once to see the
changes take effect.

Example Driven TRANSOPTR Notes

The goal of this exercise is to image the output mass selection slit of the ISAC Offline
Ion Source (OLIS) dipole magnet, aiming to produce a certain transverse twiss parameter
match criterion at the OLIS emittance rig. There are 6 quadrupoles in this example, IOS:Q1
to Q6, however we’re only going to be changing Q4, Q5 and Q6. As such, we assume that
a well defined tune already exists, and will not cover principles of beam optics - we’re only
trying to make the beam do something specific.

We assume in this example that the user has installed optr as discussed and has made a
separate folder in which to work:
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mkdir /home/oshelb/optr_example/

And obtained (or better yet wrote!) two files: data.dat and sy.f - the system file repre-
senting OLIS, shown in Appendix A.

Figure 2: Working directory with both requisite optr files: data.dat and sy.f.

As this document is a primer, no further discussion of the elements in sy.f is presented. An
overview of the code’s system elements - subroutines that represent the sequential optical
elements in the beamline - can be found in [3].

data.dat, the input datafile, contains all simulation starting parameters and element set-
points that optr will use for its computation. Note: line numbers on the left and dotted
lines added here for reference:

1...............0.0612 0.0 0.0 27944.8 1.0 1.6e-19 !

2...............-1 5 0.01 0.0001 !

3...............0 0.0 1.0 0.0 !

4...............0.16 0.03125 0.16 0.03125 0.0 3.4e-11 !

5...............1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 !

6...............2

7...............1 2 0.92 3 4 0.92

8...............6

9...............1788.0 0.0 10000.0 0 ! IOS:Q1:POS:VOL QE1 V

10..............3432.0 0.0 10000.0 0 ! IOS:Q2:POS:VOL QE2 V

11..............4413.0 0.0 10000.0 0 ! IOS:Q3:POS:VOL QE3 V

12..............4959.0 0.0 5000.0 0 ! IOS:Q4:POS:VOL QE4 V

13..............3475.0 0.0 5000.0 0 ! IOS:Q5:POS:VOL QE5 V

14..............0.0 0.0 5000.0 0 ! IOS:Q6:POS:VOL QE6 V

15..............0.001 20

16..............10 0.0 0.95 20

Commenting in the file is permitted: everything to the right of the ! character is ignored by
optr. A line-by-line summary of the parameters is presented. All inputs are assumed to be
real numbers (float), unless specified as an integer (int). Floats and integers should not be
mixed.
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data.dat line 1:

[energy (MeV)], [momentum], [b*rho], [mass (MeV/c^2)], [chargestate], [bunch-charge(C)/Cur (A)]

Line 1 contains mass, momentum, energy and charge. We note that in this example, items
2 and 3 are 0 with the input energy specified. Regarding the final parameter, if optr is run
in mode-5 (see next line), the user specifies bunch charge in C, any mode below 5 expects
a current in A. Both cases are for space charge computation.

data.dat line 2:

[iprint (int)], [IVOPT (int)], [initial Runge-Kutta stepsize], [RK error tolerance (relative)]

The integer iprint, when set to -1, produces the so-called TRANSOPTR slim output, featuring a
consolidated output beam envelope file: fort.envelope. If iprint > 0, the original optr out-
put file structure is featured, which is left to the reader to explore, notably by having a look
at $OPTRDIR/src/main.f. The Runge-Kutta engine used to solve the envelope equation
features an adaptive step size scheme which is based on the Kutta-Merson method, whose
error estimate is compared to the user specified value for the integration. More details on
optr’s RK engines can be found in [5].

Further, note that when iprint is a positive integer, setting it to either of the following
produces output translations of the TRANSOPTR sequence into other codes. That is, if iprint
=

1. output to TRANSOPTR system file

2. output to GIOS

3. output to COSY

4. output to TRANSPORT

data.dat line 3:

[bool (int)], [s-offset (cm)], [s-units(1=cm)], [Bs units(1=Kg)]

The initial boolean allows for the activation of an external s-oriented magnetic field, where
s- is the Frenet-Serret accumulated arclength of the reference particle. Parameter2 is the
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starting offset of the simulation’s longitudinal co-ordinate, independent of parameter-
1 setting. The two last floats allow for unit conversion, for example imperial. If Bs is en-
abled, the magnetic field is read in from the file fort.2, containing tabulated s vs. Bs data,
which must be supplied by the user. The field starts at the specified s-offset.

data.dat line 4:

[2*x rms], [2*Px rms], [2*y rms], [2*Py rms], [2*z rms (bun. len.)], [2*Pz rms (dp/p)]

Line 4 specifies the starting bunch parameters, in terms of the 2rms size of the distribution
in the six canonical phase space coordinates. These are the elements σii of the beam
matrix. The transverse beam dimensions are in units of length and the canonical momenta
in angles. Units are specified at line 5.

data.dat line 5:

[x dim. (1.0=1cm)], [Px dim. (1.0=1rad)], [y dim. (1.0=1cm)], [Py dim. (1.0=1rad)],

[z dim. (1.0=1cm)], [Pz dim. (dp/p in rad)]

This line controls unit definitions. Default dimensions for x,y,z are cm, meaning if the entry
in line 5 is set to 1.0. Dimensions for Px,Py,Pz are radians. For instance, if one wishes to
use inches for the x-dimension, the first entry in line 5 would read 0.3937, which is the factor
(1”/2.54cm). Regarding the longitudinal coordinates z,Pz, we clarify that in TRANSOPTR they
are, by definition:

z = βc∆t (1)

Pz =
∆E

βc
(2)

The base units for Pz, when set to 1.0 produce units in radians.

data.dat line 6:

[number of rij correlation params.]
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data.dat line 7:

1(int) 2(int) [r12] 3(int) 4(int) [r34] I J [rij]

The correlation coefficients for the I,J elements of the σ-matrix. Note, in the present ex-
ample, line 7 only contains r12 and r34, the correlation coefficients for x,Px and y,Py,
though other I J correlations can be provided, meaning line 6 needs to be updated as well.
These parameters are important as they define the orientation of the phase space ellipse
containing the rms distribution of the beam.

data.dat line 8:

[number of tuneable element parms. (int)]

This line tells optr how many elements in sy.f read in values from data.dat, via the COMMON

block. The integer on line 8 is the number of lines below occupied by tuneable parameters,
whose definition is entirely up to the user. In the example file shown here, the 6 OLIS
quadrupoles’ voltage setpoints are listed in sequence. Note that parameters from top to
bottom in data.dt are passed to the COMMON block variables from left to right. For instance,
in sy.f, the block reads as:

COMMON/BLOC1/QE1,QE2,QE3,QE4,QE5,QE6

with QE1 to 6 being stored in data.dat lines 9 to 14.

data.dat tuneable element lines:

[setpt], [min value], [max value], [bool: optimize? (int)]

Each tunable element in the file needs a user specified setpoint. In the present OLIS
example, as the optr subroutine EQ which models electrostatic quadrupoles expects an
input voltage in kilovolts, the specified voltages from data.dat are scaled by 10−3 in sy.f’s
EQ calls, visible in Appendix A. The minimum and maximum values for the setpoint are
needed if optr is called to perform an optimization. The optimization call, which will vary
the element setpoint to achieve a user-specified match in sy.f, is enabled with the final
boolean entry on the line, 1 for optimization and 0 for none.

A comment regarding what is meant by tuneable element: in TRANSOPTR, this does not
only mean control system variable such as quadrupole voltage, but can also mean physical
parameters such as drift lengths, element lengths, apertures, etc..



TRI-BN-20-06R Page 7

data.dat line N-1 and N:

[CLIM], [MAXIT]

[METHOD],[TEMPTR],[DEC],[IITER]

These last two lines supply parameters for the simulated annealing optimization routine [3].
CLIM is the convergence criterion. If the relative change or the size (whichever is smaller) of
the minimization parameter CHI is less than this number it is declared converged. Usually
CLIM can be set to 1.E-4 in mode 4 or 5, but can be down to 1.E-7 in mode 3; it is the
square root of the precision when doing a Runge-Kutta step. Would be 1.E-8 for double
precision (optr -d).

MAXIT is the maximum number of iterations. The optimizer will stop if it is exceeded.
Usually set to some number between 100 and 1000. For testing, it can be useful to set
MAXIT to 1, causing optr to only run once.

METHOD is a flag, which has to be > 0. If it is 10, some simulated annealing parameters
are set automatically.

TEMPTR is the starting temperature for the annealing procedure. If set to zero, simulated
annealing is not used at all. If it is 1., all free parameters are allowed to wiggle around during
annealing by a range equal to the allowed range of the parameter, set in that parameter’s
input line. If already near optimum, temperature can be set to 0.1, reducing the range. If the
optimum setting is unknown, setting the temperature to 10 will maximize chances of finding
the minima. This effectively means it goes through several iterations where all optimization
parameters are basically set to random values (within their allowed range).

DEC and IITER set the cooling scheme for the temperature: For a given temperature, the
parameters are allowed to fluctuate randomly and at each fluctuation, CHI is evaluated by
running through sy.f. The number of evaluations of CHI at one temperature is IITER, after
which the temperature is multiplied by DEC and another iteration started. Regarding their
use, quoting Baartman directly [6]:

“Through many many calculations with many different numbers of parameters from 3 to
30, I discovered a rule. If there are lots of free parameters, I think it’s clear that you need
lots of evaluations or else the parameter space is not properly sampled. It turns out that
IITER should be exponential in number of parameters p and I use IITER=2ˆp. So for 5
parameters, IITER=32. Further, for more parameters, you also need slower cooling. I use
DEC=1.-1./IITER. This means for 5 parameters, DEC=1-1/32=0.96875.“

“If you set METHOD=10, both DEC and IITER are set to these values above, and the last
two entries in the last line of data.dat are ignored.“
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Running TRANSOPTR

We can now run optr in our local directory, which will give us the OLIS beam envelope, up
to the emittance rig. Upon execution, TRANSOPTR computes the 2rms beam envelopes of
the system, outputting several files in the working folder, shown below.

Figure 3: Working directory after optr execution.

In brief, the output files correspond to:

• fort.label: output ascii-formatted element label vs element position along the beamline
for plotting

• fort.xml: output XML formatted sequence file (for use with TRIUMF-HLA framework)

• fort.envelope: full output beam envelope, including beam energy, reference time, all terms
of the σ-matrix and cumulative point-to-point transfer matrix.

• envelope.gnu: gnuplot script file for beam envelope printing

• optr.eps: output gnuplot encapsulated postscript (.eps) image file with beam envelope, as
defined in envelope.gnu

An overview of the output files is given in Appendix B, particularly when running iprint >
0 (data.dat line 2). The beam envelope from optr.eps is shown in fig. 4. The figure is
simply plotting values from fort.envelope.
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Figure 4: TRANSOPTR envelope simulation from the OLIS microwave source up to the OLIS emit-
tance rig. A mass 30, charge 1 beam at 61.2 keV is shown.

TRANSOPTR Optimizations

The original goal of this example was to fit twiss parameters at the emittance rig. This is
accomplished in two steps: first, fitting functions must be placed in sy.f, at the appropriate
location s along the beamline. In our example, this is simply the end of the system file. For
this case, we’re going to use the function TWISSMATCH, however the user can also use fit

or fitarb if desired. For this example, since we want to image the slit IOS:MCOL3B, we first
insert two TWISSFIND calls in sy.f at the marker ! Slit IOS:MCOL3B:

! Slit IOS:MCOL3B

call TWISSFIND(1,axi,bxi)

call TWISSFIND(3,ayi,byi)

call slit(0.05,0.5,wo,’IOS:MCOL3B’)
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! ILT:EMIT

call TWISSMATCH( 1, axi, 100.0*bxi, 1., 1)

call TWISSMATCH( 3, bxi, 100.0*byi, 1., 1)

The TWISSMATCH call is placed at the commented location of the OLIS emittance rig in sy.f.
As we’ve stated, we want to only optimize Q4 to Q6, so the optimize booleans are set to 1
in data.dat. Note that we’ve chosen to magnify the beta functions βx and βy. Once these
lines are added to the system file and data.dat is set to optimize the quads, we run optr in
the command line, and after a few iterations obtain our solution, shown in fig. 5.
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Figure 5: TRANSOPTR envelope simulation from the OLIS microwave source up to the OLIS emit-
tance rig. A mass 30, charge 1 beam at 61.2 keV is shown. The slit has been imaged at the OLIS
emittance rig following optimization.

Finally, TRANSOPTR prints out the optimized parameters after the fit is complete:

Runge-Kutta engine= 0, Final step= 0.160cm, EPS= .100E-03
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Symplectic.Error/EPS; Avg.= 0.079, St.Dev.= 0.066, Max. = 0.216

No. of iterations = 2

20 Final run sqrt(CHI)= 0.1671861E+02

Fixed Parameter: 1788.

Fixed Parameter: 3432.

Fixed Parameter: 4413.

Varied Parameter: 4570.

Varied Parameter: 2632.

Varied Parameter: 3.295

The list which is printed to terminal shows each of the specified tuneable parameters and
their final values if the optimization converged. In this case, the last three parameters
correspond to the voltages for Q4, Q5 and Q6. We note that Q6 can effectively remain
unpowered.
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Appendix A: OLIS sy.f - system file

SUBROUTINE TSYSTEM

COMMON/SCPARM/QSC,ISC,CMPS

COMMON/MOM/P,BRHO,pMASS,ENERGK,GSQ,ENERGKi,charge,current

COMMON/BLOC1/QE1,QE2,QE3,QE4,QE5,QE6

CMPS=0.314 ! Number of cm per step, for plotting only

wo=1.0 ! Weight aberration from optical elements

! startOf_olis_transoptr

call drift(11.7623,".")

! IOS:XCB1

call drift(3.887,".")

! IOS:YCB1

call drift(16.5609,".")

! Electrostatic dipole IOS:B1A

call Eedge(25.379,36.0,1.0,0.212,3.81,wo)

call Ebend(25.379,36.0,1.0,’IOS:B1A’)

call Eedge(25.379,36.0,1.0,0.212,3.81,wo)

call drift(15.4919,".")

! IOS:YCB1A

call drift(6.272,".")

! Deflector IOS:XCB1A

call deflectx(5.08,9.0,0,0)

call drift(4.607,".")

! endOf_ios_mws

call drift(6.702,".")

! Electrostatic quadrupole IOS:Q1

call Equad(-0.001*QE1,2.54,4.892,wo,’IOS:Q1’)

call drift(5.3148,".")

! Electrostatic quadrupole IOS:Q2

call Equad(0.001*QE2,2.54,9.8704,wo,’IOS:Q2’)

call drift(2.8178,".")
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! Electrostatic quadrupole IOS:Q3

call Equad(-0.001*QE3,2.54,4.892,wo,’IOS:Q3’)

call drift(4.56,".")

! Slit IOS:MCOL3A

call slit(0.05,0.5,wo,’IOS:MCOL3A’)

call drift(1.951,".")

call marker(’IOS:FC3’)

call drift(12.724,".")

! IOS:YCB3

call drift(36.898,".")

! Magnetic dipole IOS:MB

call edge(0.0,29.9887,60.0,0.0,0.317,2.0,5.08,0.0,wo)

call bend(29.9887,60.0,0.0,’IOS:MB’)

call edge(0.0,29.9887,60.0,0.0,0.317,2.0,5.08,0.0,wo)

call drift(36.6619,".")

! IOS:YCB4

call drift(14.928,".")

! Slit IOS:MCOL3B

call slit(0.05,0.5,wo,’IOS:MCOL3B’)

call drift(4.544,".")

! Electrostatic quadrupole IOS:Q4

call Equad(-0.001*QE4,2.54,4.892,wo,’IOS:Q4’)

call drift(4.0688,".")

! Electrostatic quadrupole IOS:Q5

call Equad(0.001*QE5,2.54,9.8704,wo,’IOS:Q5’)

call drift(1.5288,".")

! start_q6_tomography

call drift(2.541,".")

! Electrostatic quadrupole IOS:Q6

call Equad(0.001*QE6,2.54,4.892,wo,’IOS:Q6’)

call drift(10.218,".")

! IOS:YCB6

call drift(14.564,".")

! ILT:EMIT

call print_transfer_matrix

return

end
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Appendix B: Original TRANSOPTR FORTRAN Output Files

optr will output the following files if the first integer in data.dat line 2 is greater than 0.

fort.1

[label] [s (cm)] [x-envelope (cm)] [y-envelope (cm)] ...

2rms envelope output computation file, see main.f for full sequencing of elements. The
file also contains the transfer matrix. We note that fort.3 contains the element positions
in 3D space.

fort.8

System file (sy.f) translation into other optics codes. For data.dat line 2, entry 1 (see
iprint) equal to positive integer:

1. output to TRANSOPTR system file

2. output to GIOS

3. output to COSY

4. output to TRANSPORT

fort.81, fort.83

Both files contain output Twiss parameters for the x,y envelopes, respectively.

fort.9x

The files fort.91, ..., fort.96 are generated and represent the ith transfer matrix row
elements. For instance, fort.91 contains the elements M11, M12, M13, M14, M15, M16
at each point in the computation.
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Appendix C: Conversion of Longitudinal Emittance Units

This appendix is intended to make clear the conversion between longitudinal emittance
units, in particular from energy-time to cm·rad, as used in TRANSOPTR. The original LANA
simulations from Gorelov et al. [7], which were used in Ref. [8], make use of the for-
mer convention. For more details, see [9]. The longitudinal emittance is quoted as εz =
1.6πkeV/u · ns, while the Twiss parameter βz is in deg/% for 105MHz. The conversion to
cm, rad is performed as follows, where we assume a mass of 22u and an energy of 200
keV/u. We first note the use of π in the quoted emittance, which we disregard from the
computation. We first ccompute the relativistic β factor for the 200 keV/u case:

K = (γ − 1)mc2 (3)

(γ − 1) = 2.147 × 10−4 (4)

β = 0.0207 (5)

The emittance is then normalized by the full relativistic momentum of the reference particle:

εz = 1.6π
keV

u
· ns (6)

εz = 35.2keV · ns (7)

εz = 35.2
keV

βγmc
· ns

( 1MeV

1000keV

)
(8)

εz = 0.0025cm · rad (9)

We’ve obtained the final longitudinal emittance by multiplying out the resulting units at Eq.
(3). Next, for the Twiss-βz function, ref. [8] presents the units of βz in degrees at 105MHz,
so we compute the corresponding time duration of one degree at that frequency:

∆t =
1

f

1

360◦
= 2.646 × 10−11s (10)

we know in TRANSOPTR that phase space coordinate 5 is expressed as ∆z = βc∆t, so we
convert one degree of the above period to a length scale, where β is the relativistic velocity
parameter:

∆z = 0.0207 · 3 × 1010
cm

s
· 2.646 × 10−11s = 0.0164cm (11)
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We now know that 1◦ RF at 105MHz corresponds to 0.0164cm for this particular beam
velocity. The βz conversion from deg/% to cm·rad then proceeds as follows:

βz = 78.7
deg

%

( 1%

10mrad

)(0.0164cm

1deg

)
(12)

βz = 0.1291
cm

mrad
= 129.1

cm

rad
(13)

We note that αz is dimensionless and therefore requires no conversion, while γz may now
be found using the standard Twiss parameter definition:

γz
[ rad

cm

]
=

1 + α2

βz
(14)


