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Abstract: The method presented in the internal note TRI-BN-23-09 was valid
only for dipole magnets with non-saturated poles; In this note I extend this
method to the case of a fully saturate magnets.
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1 Introduction

The premises are the same as for TRI-BN-23-09 [1] except that we now consider the case
of a fully saturated magnet (u, — 1). More precisely, we assume that the magnetization M
is uniform within the pole and oriented along ¥: the direction normal to the magnet median
plane. This assumption allows us to represent the effect of a modification of the shape of
the pole surface using a current loop. This analytical technique is described is several text
books; particularly relevant to our case is it application to the design of superconducting
cyclotron magnets [2].

The effect of displacing one point on the surface of a fully saturated pole can be modeled
using an infinite sheet of current, running along the surface of a groove (see: [1, Fig. 1])
with a line density:

% =M x, (1)
where 77 is the a unit vector normal to the surface and pointing outward. Since M is assumed
to be oriented along y and 7 is confined to the (x,y) plane, dI is oriented along z. Basic
trigonometry leads:

h

with h the height and w the half-width of the groove, and 12 = w? + h2. Note that if h < 0
the “groove” is actually a “bump”.

With M pointing upward and the groove height h > 0, dI is positive along the left side
of the groove, and negative along it right side. Because we assumed that the pole is fully
saturated, M = fo with By the saturation field of the ferromagnetic material (B ~ 2.14 T
for soft steel [2]).

Each infinitesimal section of the groove behaves as a pair of infinitely long current-
carrying wires, one below and one above the median plane. The resulting field along this
plane is purely vertical and give by:
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2
with r2 = (m — w%)2 + (1 +h— h‘lil) , where all length are given in units of the half-gap
height. In the limit where h — 0:
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To validate this model T used a simple OPERA-2D dipole model, with constant gap
height. I created a groove on the surface of the pole with a depth h = 4% of the half-
gap height. I set the coil current so that the pole of the magnet is fully saturated. The
differential effect of the groove is shown on Fig. 1 for two different groove width, and the
theoretical prediction from Eq. (4) is compared with the OPERA result.
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Figure 1: Differential effect of a groove on the magnetic field distribution By (z) along the
median plane (y = 0). The position z is given in unit of the magnet half-gap height. The
depth h of the groove is 4% of the dipole half-gap height. The OPERA-2D result (dots) is
compared with the closed form Eq. (4) (solid lines), for two different groove width: 0.5 and
2 times the half-gap height.

2 Jacobian matrix

The Jacobian matrix coefficient for a fully saturated magnet (u, — 1) that we are looking
for is obtained as:
1 0B,

()

h=0
where By is field value at (z = 0) with no groove. Written explicitly in units of By per unit
of the half-gap height it becomes:

J1(z) B In ( (2 +1) 2) . (6)

 2rBow  \ —2u0? (22 — 1) + wh + (22 + 1)
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