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Abstract: In this note I describe the implementation in the envelope code
TRANSOPTR of the tracking through an arbitrary static magnetic field with
median plane symmetry. I also present a couple of benchmarking examples.
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1 Objective

Let’s assume that the reference particle’s trajectory lies with the median plane of a fixed
(magnetic) field circular accelerator. The objective is to calculate, at every location s along
the reference trajectory, the coefficient of the infinitesimal transfer matrix from the vertical
component of the magnetic field B(r,#), and its partial derivatives.

In practice, I shall get B(r, §) and its partial derivative from some numerical interpolation
of a 2-dimensional polar map. This should be relatively easy: I just need to find the right
bicubic spline FORTRAN library for that, or something like that. For the time being, let’s
just assume that we know how to evaluate B(r,#), and its derivatives.

2 Infinitesimal Matrix

As shown by Rick [1], the quadratic hamiltonian in a static magnet with median plane
symmetry is given by:
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where (z,y, s) are the Frenet-Serret coordinates; z is “scaled” time coordinate:
z=s— fBct, (2)

where (c is the speed of the reference particle, and ¢ is the time of flight of an arbitrary
particle. The momenta canonically conjugated to x,y, z are the “scaled” momenta:
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where P, and P, are the usual canonical momenta, and AP is the deviation from the
reference particle momentum P. The curvature p(s) of the reference particle’s trajectory is

given by: P
o) = 5y 0

Note that this definition of p differs from the standard Frenet-Serret definition by a sign.
The field index n(s), evaluated around this reference trajectory, is given by:
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In practice, it would be more convenient to use 6 as independent variable: this way we
could ask TRANSOPTR to track for any number of turns. It is much harder to do that if
you use s as independent variable (one does not know the orbit length a priori). Tracking
with 6 as independent variable is done by solving:

do dods T
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Lt ds _ r ta ol .
where, since g7 = 2o and F is given by:
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3 Reference Trajectory

To obtain coordinate 7, pg, and t of the reference particle at every step in 6, we only
need to numerically integrate the equations of motion that derive from Hagedoorn’s Hamil-
tonian [4], namely:

ddP;T =Py +qrB(r,0), (9)
Ry (10)
or, using our “scaled” momenta:
% — (11)
=t (12)
% B BCTPG (13)

where pg = ﬁ

4 Field Index

The last complication comes from the calculation of the partial derivative in the field
index. Let’s use the chain rule again:

0B _0B0§ 0Bor _0Bp, 0B (14)
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The field index is evaluated by injecting this equation into Eq. (5).

5 Benchmark against BEND

I tracked through a simple analytical field model:

r

B.(r) = Bo ()k | (15)

To
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with 1o = 1m, By = Bp/1m, and k¥ = —0.1. T chose the particle to be a 50 MeV electron,
and I tracked for 360 degree (using the gfortran flag for double precision), and I got the
following transfer matrix:

0.948467 —33.4015 0.00000 0.00000  0.00000  5.72584
0.300614 x 1072 0.948467 0.00000 0.00000  0.00000 —0.334015
0.00000 0.00000 —0.404216 289.242  0.00000  0.00000
0.00000 0.00000  —0.289242 x 1072  —0.404216 0.00000  0.00000
0.334015 —5.72584 0.00000 0.00000  1.00000 —735.180
0.00000 0.00000 0.00000 0.00000  0.00000  1.00000

And here is the matrix a get from a call to call bend(r0,360.,+0.1,’bend’) (mind the
sign difference ak = —k, due to the definition of the field index):

0.948467 —33.4015 0.00000 0.00000  0.00000  5.72584
0.300614 x 1072 0.948467 0.00000 0.00000  0.00000 —0.334015
0.00000 0.00000 —0.404216 289.242  0.00000  0.00000
0.00000 0.00000 —0.289242 x 1072 —0.404216 0.00000  0.00000
0.334015 —5.72584 0.00000 0.00000  1.00000 —735.180
0.00000 0.00000 0.00000 0.00000  0.00000  1.00000

Note that I obtained the exact same matrix in ‘mode’ 3 (canned routine) and 4 (numerical
integration). Note also that without the ‘~-doublePrecision’ compiler flag differences
appear on the 5 significant digit.

6 Spiral Sector Scaling FFAG

As an intermediate ‘debug’ step toward my objective of tracking though a field map, I
implemented the routine FFA_SYMON to track through the analytical field model of a spiral
FFAG [7] with a simple cosine azimuthal field variation:

B.(r) = By (;)k {1 + fcos (Ne ~ Nlog (’") tan(g)ﬂ . (16)

To

I decided to test the code by calculating the tune for the case of the small electron ring we
had worked on with Aurelia [5]. T tracked through 1 sector of the 5-sector lattice using

nsec = 5 !number of sectors

r0 = 30.0 !'cm

b0 = -BRHO/r0*100.0 !T, since BRHO in stored in TRANSOPTR in T.m
ak = -0.1

f =0.5

zeta = 65.0 !deg

call FFA_SYMON(ri,rpi,0.0,360./nsec,r0,b0,ak,nsec,f,zeta)

Now, to calculate a tune, I first had to place the reference particle right on the closed
orbit. So I implemented a routine to do that, based on CYCLOPS algorithm [3], called
CLOSED_ORBIT.
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Let me write a few words on how to use the routine CLOSED_ORBIT. Let’s look at the
following sy.f example:

SUBROUTINE TSYSTEM

EXTERNAL ONE_SECTOR

r=30.

rp=0.

call CLOSED_ORBIT(r,rp,ONE_SECTOR)
return

end

SUBROUTINE ONE_SECTOR(ri,rpi)
COMMON/MOM/P,BRHO, pMASS ,ENERGK, GSQ , ENERGK1, charge, current
nsec=5

r0=30.0 'cm

b0=-BRHO/r0*100.0 !T

ak=-0.1

£=0.5

zeta=65.0 !deg

call FFA_SYMON(ri,rpi,0.0,360./nsec,r0,b0,ak,nsec,f,zeta)
RETURN

END

After calling CLOSED_ORBIT (r,rp,0ONE_SECTOR), the parameters r and rp are right on the
closed orbit (within t required accuracy controlled by the RK EPS parameters, specified
in data.dat on line 2, column 4). Note that the 3'¢ argument of the CLOSED_ORBIT is a
subroutine: it defined the “lattice” though which the tracking is done. It is a wapping
around one of the “FFA” routines, either FFA_SYMON or POLAR_MAP.

Once I had found the closed orbit, I tracked over 1 sector (i.e. 1/5 of a turn) and I got
the following transfer matrix:

—1.05439 34.8717 0.00000 0.00000  0.00000 27.4213
—0.794976 x 10~1  1.68079 0.00000 0.00000  0.00000  1.87369
0.00000 0.00000 1.18408 25.9283  0.00000  0.00000
0.00000 0.00000  —0.901261 x 101 —1.12899 0.00000  0.00000
—0.204324 —19.2492 0.00000 0.00000  1.00000 —11.3227
0.00000 0.00000 0.00000 0.00000  0.00000  1.00000

This leads to tunes of v, = 0.9965 and v, = 1.228, in full agreement with what is found in
Aurelia’s paper [5].

7 Tracking through TRIUMF CYclotron Field Map

I wrote the routine POLAR_MAP to load a 2-dimension polar field map and track through it.
To evaluate the field and its partial derivative anywhere within the map, I use a bicubic spline
interpolation from the fortran library FITPACK [2]. Note that the effect of space charge is
taken into account in the same way than in all the other “SC” routines in TRANSOPTR
(via a call to the routine SC_KICK).

I tested POLAR_MAP with the mid-plane field map of the TRIUMF 500 MeV cyclotron field
map (angular step size: 1 deg., radial step size: 3 inch). To calculate tunes, and especially
to get the integer part of the tune right, I implemented the robust algorithm proposed by
Meade [6]. I ran TRANSOPTR in a loop from 1 to 500 MeV, in steps of 1 MeV, updating
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the common block MOM for every energy. If you want to see what the input file look like,
take a look in the transoptr example/FFA on gitlab.triumf.ca. The resulting tune diagram
as compared with CYCLOPS output is shown in Fig. 1. T do not understand the slight

Tune Diagram of TRIUMF Cyclotron (CYCDATAS581)
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Figure 1: TRIUMF cyclotron tune diagram calculated by CYCLOPS, and TRANSOPTR..

difference between the two curves: is it coming from the fact that CYCLOPS precision is
limited due to the constant step size of 1 deg.? Note also that the run time of TRANSOPTR
is 2 to 3 orders of magnitude larger than CYCLOPS. Most of the computation times seems
to be spent evaluating the bicubic spline. This could be improved by using a simpler and
faster interpolation scheme, such as one using a kernel function. I am not interested in speed
at the moment, I won’t implement it.
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