

Beam Physics Note TRI-BN-20-09 May 21, 2020

TRANSOPTR Routine: FFA

Thomas Planche

TRIUMF

Abstract: In this note I describe the implementation in the envelope code TRANSOPTR of the tracking through an arbitrary static magnetic field with median plane symmetry. I also present a couple of benchmarking examples.

1 Objective

Let's assume that the reference particle's trajectory lies with the median plane of a fixed (magnetic) field circular accelerator. The objective is to calculate, at every location s along the reference trajectory, the coefficient of the infinitesimal transfer matrix from the vertical component of the magnetic field $B(r, \theta)$, and its partial derivatives.

In practice, I shall get $B(r, \theta)$ and its partial derivative from some numerical interpolation of a 2-dimensional polar map. This should be relatively easy: I just need to find the right bicubic spline FORTRAN library for that, or something like that. For the time being, let's just assume that we know how to evaluate $B(r, \theta)$, and its derivatives.

2 Infinitesimal Matrix

As shown by Rick [1], the quadratic hamiltonian in a static magnet with median plane symmetry is given by:

$$h(x, p_x, y, p_y, z, p_z; s) = \frac{x^2}{2} \frac{1-n}{\rho^2} + \frac{y^2}{2} \frac{n}{\rho^2} + \frac{p_x^2}{2} + \frac{p_y^2}{2} - \frac{p_z x}{\rho} + \frac{p_z^2}{2\gamma^2},$$
(1)

where (x, y, s) are the Frenet-Serret coordinates; z is "scaled" time coordinate:

$$z = s - \beta ct \,, \tag{2}$$

where βc is the speed of the reference particle, and t is the time of flight of an arbitrary particle. The momenta canonically conjugated to x, y, z are the "scaled" momenta:

$$p_x = P_x/P,$$

$$p_y = P_y/P,$$

$$p_z = \Delta P/P,$$
(3)

where P_x and P_y are the usual canonical momenta, and ΔP is the deviation from the reference particle momentum P. The curvature $\rho(s)$ of the reference particle's trajectory is given by:

$$\rho(s) = \frac{P}{qB(s)} \,. \tag{4}$$

Note that this definition of ρ differs from the standard Frenet-Serret definition by a sign. The field index n(s), evaluated around this reference trajectory, is given by:

$$n(s) = -\frac{\rho(s)}{B(s)} \left. \frac{\partial B(s)}{\partial x} \right|_{x=y=0}.$$
(5)

In practice, it would be more convenient to use θ as independent variable: this way we could ask TRANSOPTR to track for any number of turns. It is much harder to do that if you use s as independent variable (one does not know the orbit length a priori). Tracking with θ as independent variable is done by solving:

$$\frac{\mathrm{d}\boldsymbol{\sigma}}{\mathrm{d}\boldsymbol{\theta}} = \frac{\mathrm{d}\boldsymbol{\sigma}}{\mathrm{d}s}\frac{\mathrm{d}s}{\mathrm{d}\boldsymbol{\theta}} = \boldsymbol{F}\boldsymbol{\sigma} + \boldsymbol{\sigma}\boldsymbol{F}^{\mathrm{T}}, \qquad (6)$$

where, since $\frac{ds}{d\theta} = \frac{r}{p_{\theta}}$, and \boldsymbol{F} is given by:

$$\boldsymbol{F} = \frac{r}{p_{\theta}} \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ \frac{n(s)-1}{\rho(s)^2} & 0 & 0 & 0 & 0 & -\frac{1}{\rho(s)} \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{n(s)}{\rho(s)^2} & 0 & 0 & 0 \\ \frac{1}{\rho(s)} & 0 & 0 & 0 & 0 & 1 - \beta^2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} .$$
(7)

3 Reference Trajectory

To obtain coordinate r, p_{θ} , and t of the reference particle at every step in θ , we only need to numerically integrate the equations of motion that derive from Hagedoorn's Hamiltonian [4], namely:

$$\frac{\mathrm{d}r}{\mathrm{d}\theta} = r \frac{P_r}{P_\theta} \,,\tag{8}$$

$$\frac{\mathrm{d}P_r}{\mathrm{d}\theta} = P_\theta + qrB(r,\theta)\,,\tag{9}$$

$$\frac{\mathrm{d}t}{\mathrm{d}\theta} = \frac{\gamma m r}{P_{\theta}}\,,\tag{10}$$

or, using our "scaled" momenta:

$$\frac{\mathrm{d}r}{\mathrm{d}\theta} = r \frac{p_r}{p_\theta} \,,\tag{11}$$

$$\frac{\mathrm{d}p_r}{\mathrm{d}\theta} = p_\theta + \frac{r}{\rho(r,\theta)}\,,\tag{12}$$

$$\frac{\mathrm{d}t}{\mathrm{d}\theta} = \frac{r}{\beta c \, p_{\theta}} \,, \tag{13}$$

where $p_{\theta} = \sqrt{1 - p_r^2}$.

4 Field Index

The last complication comes from the calculation of the partial derivative in the field index. Let's use the chain rule again:

$$\frac{\partial B}{\partial x} = \frac{\partial B}{\partial \theta} \frac{\partial \theta}{\partial x} + \frac{\partial B}{\partial r} \frac{\partial r}{\partial x} = \frac{\partial B}{\partial \theta} \frac{p_r}{r} - \frac{\partial B}{\partial r} p_{\theta} \,. \tag{14}$$

The field index is evaluated by injecting this equation into Eq. (5).

5 Benchmark against BEND

I tracked through a simple analytical field model:

$$B_z(r) = B_0 \left(\frac{r}{r_0}\right)^k \,, \tag{15}$$

with $r_0 = 1 \text{ m}$, $B_0 = B\rho/1 \text{ m}$, and k = -0.1. I chose the particle to be a 50 MeV electron, and I tracked for 360 degree (using the gfortran flag for double precision), and I got the following transfer matrix:

1	0.948467	-33.4015	0.00000	0.00000	0.00000	5.72584)
(0.300614×10^{-2}	0.948467	0.00000	0.00000	0.00000	-0.334015
	0.00000	0.00000	-0.404216	289.242	0.00000	0.00000
	0.00000	0.00000	-0.289242×10^{-2}	-0.404216	0.00000	0.00000
	0.334015	-5.72584	0.00000	0.00000	1.00000	-735.180
	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000

And here is the matrix a get from a call to call bend(r0,360.,+0.1,'bend') (mind the sign difference ak = -k, due to the definition of the field index):

1	0.948467	-33.4015	0.00000	0.00000	0.00000	5.72584)
	0.300614×10^{-2}	0.948467	0.00000	0.00000	0.00000	-0.334015
	0.00000	0.00000	-0.404216	289.242	0.00000	0.00000
	0.00000	0.00000	-0.289242×10^{-2}	-0.404216	0.00000	0.00000
	0.334015	-5.72584	0.00000	0.00000	1.00000	-735.180
1	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000 /

Note that I obtained the exact same matrix in 'mode' 3 (canned routine) and 4 (numerical integration). Note also that without the '--doublePrecision' compiler flag differences appear on the 5th significant digit.

6 Spiral Sector Scaling FFAG

As an intermediate 'debug' step toward my objective of tracking though a field map, I implemented the routine FFA_SYMON to track through the analytical field model of a spiral FFAG [7] with a simple cosine azimuthal field variation:

$$B_z(r) = B_0 \left(\frac{r}{r_0}\right)^k \left[1 + f \cos\left(N\theta - N\log\left(\frac{r}{r_0}\right)\tan(\zeta)\right)\right].$$
 (16)

I decided to test the code by calculating the tune for the case of the small electron ring we had worked on with Aurelia [5]. I tracked through 1 sector of the 5-sector lattice using

```
nsec = 5 !number of sectors
r0 = 30.0 !cm
b0 = -BRH0/r0*100.0 !T, since BRH0 in stored in TRANSOPTR in T.m
ak = -0.1
f = 0.5
zeta = 65.0 !deg
call FFA_SYMON(ri,rpi,0.0,360./nsec,r0,b0,ak,nsec,f,zeta)
```

Now, to calculate a tune, I first had to place the reference particle right on the closed orbit. So I implemented a routine to do that, based on CYCLOPS algorithm [3], called CLOSED_ORBIT.

TRI-BN-20-09

Let me write a few words on how to use the routine CLOSED_ORBIT. Let's look at the following sy.f example:

```
SUBROUTINE TSYSTEM
EXTERNAL ONE_SECTOR
r=30.
rp=0.
call CLOSED_ORBIT(r,rp,ONE_SECTOR)
return
end
SUBROUTINE ONE_SECTOR(ri,rpi)
COMMON/MOM/P, BRHO, pMASS, ENERGK, GSQ, ENERGKi, charge, current
nsec=5
r0=30.0 !cm
b0=-BRH0/r0*100.0 !T
ak=-0.1
f=0.5
zeta=65.0 !deg
call FFA_SYMON(ri,rpi,0.0,360./nsec,r0,b0,ak,nsec,f,zeta)
RETURN
END
```

After calling CLOSED_ORBIT(r,rp,ONE_SECTOR), the parameters r and rp are right on the closed orbit (within t required accuracy controlled by the RK EPS parameters, specified in data.dat on line 2, column 4). Note that the 3rd argument of the CLOSED_ORBIT is a subroutine: it defined the "lattice" though which the tracking is done. It is a wapping around one of the "FFA" routines, either FFA_SYMON or POLAR_MAP.

Once I had found the closed orbit, I tracked over 1 sector (i.e. 1/5 of a turn) and I got the following transfer matrix:

1	-1.05439	34.8717	0.00000	0.00000	0.00000	27.4213
l	$-0.794976 imes 10^{-1}$	1.68079	0.00000	0.00000	0.00000	1.87369
l	0.00000	0.00000	1.18408	25.9283	0.00000	0.00000
l	0.00000	0.00000	$-0.901261 imes 10^{-1}$	-1.12899	0.00000	0.00000
I	-0.204324	-19.2492	0.00000	0.00000	1.00000	-11.3227
(0.00000	0.00000	0.00000	0.00000	0.00000	1.00000 /
	`					

This leads to tunes of $\nu_r = 0.9965$ and $\nu_z = 1.228$, in full agreement with what is found in Aurelia's paper [5].

7 Tracking through TRIUMF CYclotron Field Map

I wrote the routine POLAR_MAP to load a 2-dimension polar field map and track through it. To evaluate the field and its partial derivative anywhere within the map, I use a bicubic spline interpolation from the fortran library FITPACK [2]. Note that the effect of space charge is taken into account in the same way than in all the other "SC" routines in TRANSOPTR (via a call to the routine SC_KICK).

I tested POLAR_MAP with the mid-plane field map of the TRIUMF 500 MeV cyclotron field map (angular step size: 1 deg., radial step size: 3 inch). To calculate tunes, and especially to get the integer part of the tune right, I implemented the robust algorithm proposed by Meade [6]. I ran TRANSOPTR in a loop from 1 to 500 MeV, in steps of 1 MeV, updating

the common block MOM for every energy. If you want to see what the input file look like, take a look in the transoptr example/FFA on gitlab.triumf.ca. The resulting tune diagram as compared with CYCLOPS output is shown in Fig. 1. I do not understand the slight

(c) tplanche, 2020/May/19

Figure 1: TRIUMF cyclotron tune diagram calculated by CYCLOPS, and TRANSOPTR..

difference between the two curves: is it coming from the fact that CYCLOPS precision is limited due to the constant step size of 1 deg.? Note also that the run time of TRANSOPTR is 2 to 3 orders of magnitude larger than CYCLOPS. Most of the computation times seems to be spent evaluating the bicubic spline. This could be improved by using a simpler and faster interpolation scheme, such as one using a kernel function. I am not interested in speed at the moment, I won't implement it.

References

- R. Baartman. Linearized Equations of Motion in Magnet with Median Plane Symmetry. Technical Report TRI-DN-05-06, TRIUMF, 2005.
- [2] Paul Dierckx. Curve and surface fitting with splines. Oxford University Press, 1995.
- [3] MM Gordon. Orbit properties of the isochronous cyclotron ring with radial sectors. Annals of Physics, 50(3):571-597, 1968.
- [4] HL Hagedoorn and NF Verster. Orbits in an AVF cyclotron. Nuclear Instruments and Methods, 18:201–228, 1962.
- [5] Aurelia Laxdal, Richard Baartman, Iouri Bylinskii, A Gottberg, FW Jones, P Kunz, T Planche, A Sen, S Ganesh, and L Lopera. Recirculating electron beam photo-converter

Page 6

for rare isotope production. In 21st Int. Conf. on Cyclotrons and Their Applications (Cyclotrons' 16), Zurich, Switzerland, September 11-16, 2016, pages 383–386. JACOW, Geneva, Switzerland, 2017.

- [6] Colleen Meade. Changes to the main magnet code. Technical Report TRI-DN-70-54-Addendum4, TRIUMF, 1971.
- [7] K. R. Symon, D. W. Kerst, L. W. Jones, L. J. Laslett, and K. M. Terwilliger. Fixed-field alternating-gradient particle accelerators. *Phys. Rev.*, 103:1837–1859, Sep 1956.