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Abstract: In this note I brush up a little the theory that I had presented in
my Cyclotrons’19 paper, to reflect the latest development in the from orbit

code. Then I present the case of a cyclotron magnet that I have designed using
OPERA-3D from the isochronous field distribution obtained using the python
package from orbit.
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1 Introduction

In[1] I showed how to calculate the transverse tunes from the geometry of the closed
orbits in a fixed field accelerator. In this paper, I did not make it very clear that the
transverse tunes are entirely determined from geometry in the case of isochronous obits. It
does not matter what type of particle you are dealing with, it is only the geometry of the
orbits that matters for the tunes. Let me try to clarify this point in the next section.

In Section 3 I present an example of a cyclotron designed using the from orbit code.
In Section 4, I show how I used the finite element code OPERA-3D to determine a magnet
geometry that produces the required field distribution.

2 Theory: Isochronous Orbits and Tunes

Let’s recall the premisses. The first assumption is that the shape of all the closed orbits
is known and given by:

r(a, θ) : R+ × R→ R+ , (1)

where r is the radius of the closed orbit, a is the orbit’s average radius, and θ is the azimuth.
The periodicity of the closed orbits imposes that:

r(a, θ + 2π/N) = r(a, θ + 2π/N) with N ∈ N∗ , (2)

where N is the lattice periodicity, i.e. number of sectors. Although is it not strictly necessary,
we impose that:

∂r

∂a
> 0 , (3)

which guaranties that the closed orbit never cross. The last assumption is that the orbits are
isochronous1, which leads to the following relation between the particle velocity β (relative
to the speed of light) and the orbit length L:

β(a) =
L(a)

2πR∞
, (4)

where R∞ is a constant, L is the orbit circumference:

L(a) =

∫ 2π

0

ds

dθ
dθ , (5)

and:

ds

dθ
=

√
r2 +

(
∂r

∂θ

)2

. (6)

So far, it is geometry, and only geometry.
Transverse tunes are obtained by numerically integrating:

dX

dθ
= X′

ds

dθ
= FX

ds

dθ
(7)

over one period for two different sets of initial transverse state vectors: X = (1, 0, 1, 0, 0, 0)T

and X = (0, 1, 0, 1, 0, 0)T, see for instance Ref. [2]. The infinitesimal transfer matrix F for a

1In[1], I treat the more general case of non-isochronous orbits, where β(a) can be arbitrary, but let’s not
concern ourselves with that here.
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fixed field magnet with mid-plane symmetry is given by[3]:

F =


0 1 0 0
n−1
ρ2 0 0 0

0 0 0 1
0 0 − n

ρ2 0

 . (8)

One only needs to know how to calculate the field index n and the radius of curvature ρ
at any point along an orbit to track the linear motion of particles around it, and obtain
transverse tunes exact to arbitrary precision.

The orbit curvature is first obtained as in wikipedia:Curvature:

1

ρ
=
r2 + 2

(
∂r
∂θ

)2 − r ∂2r
∂θ2(

r2 +
(
∂r
∂θ

)2)3/2 . (9)

The field index n is obtained from:

n = − ρ

B0

∂B

∂x
=
∂ρ

∂x
− ρ

βγ

∂βγ

∂x
(10)

where βγ = β√
1−β2

and β is given by Eq. (4). As shown in [1]:

∂ρ

∂x
=
∂ρ

∂a

∂a

∂x
+
∂ρ

∂θ

∂θ

∂x
=

1

r

(
∂ρ

∂a

ds
dθ
∂r
∂a

− ∂ρ

∂θ

∂r
∂θ
ds
dθ

)
, (11)

where ds
dθ is given by Eq. (6). If one chooses R∞ to be the unit of length, the numerical

integration is done entirely from the knowledge of r(a, θ) and its partial derivatives. And
since the transverse tunes are unitless numbers, their values is not affected by the choice of
the unit of length, i.e. independent of R∞. The transverse tunes derive entirely from the
shape of the orbits, and from absolutely nothing else.

Note that, to be able to calculate tunes this way, the function r(a, θ) must be sufficiently

smooth for the following partial derivatives: ∂r
∂θ ,

∂r
∂2θ2 ,

∂3r
∂θ3 ,

∂r
∂a ,

∂2r
∂aθ ,

∂3r
∂aθ2 to be defined.

3 Constant Tune Compact Cyclotron

The conventional approach to cyclotron design is to start from the geometry of the
magnet, modeled in some 3-dimensional finite element code, and to modify this geometry to
iteratively produce an isochronous field distribution. This typically takes many iterations
of hours-long calculation to produce 1 field map. By contrast, when starting from some
arbitrary function r(a, θ) one can produce an isochronous field map in a split second. One
can then search the large parameter space of possible r(a, θ) functions to explore, relatively
much more quickly, the range of possible isochronous distributions.

Let’s consider the following way to parametrized the shape of the closed orbits:

r(a, θ) = a
(
1 + C(a) cos

(
N(θ − φ(a))

))
, (12)

where N is the number of sectors. One now needs to find a way to define the two functions
C(a) and φ(a) using a finite – and hopefully small – number of degrees of freedom. This
can be done, for instance, by constraining the values of C(a) and φ(a) for a finite number of
orbits, and use a cubic spline interpolation to evaluate there function for any intermediate
value of a.

https://en.wikipedia.org/wiki/Curvature#Polar_coordinates
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In the example presented in Table 1, I define r(a, θ) following Eq. (12) constraining
the values of C(a) and φ(a) for only 5 different orbits. Since I am considering the design
of a compact cyclotron, where the radius of the innermost orbit is small compared to the
magnetic gap of the cyclotron magnet, the innermost orbit is necessarily very close to a
perfect circle. For this reason I start with C(0.004×R∞) = 0. The initial value of φ(a) can
be chosen arbitrarilyL I chose φ(0.004×R∞) = 0. Four more values of C and φ remain to
be chosen: the magnetic field of the entire cyclotron is parametrized with only 4 × 2 = 8
degrees of freedom.

To setup an optimization problem, one needs to choose an objective: I choose to
minimize the RMS variation of the radial and vertical tunes of the acceleration range of
the cyclotron. Now it is just a matter to let some optimization routine (I used python
scipy.optimize.minimize) to adjust the 8 degrees of freedom to best satisfy the objective
function. The result obtained in the case of a 3-sector cyclotron are presented in Table 1
and Figs. 1 to 3. Note that, because of the constraint that the innermost orbit should be
circular, the tunes start around νr = 1 and νz = 0, but rapidly increase to νr ≈ 1.3 and
νz = 0.47 and remain there for the entire range of the machine (until a = 0.425R∞).

a/R∞ C φ/rad

0.004 0. 0.

0.14 0.07297 0.5636

0.24 0.08343 0.5687

0.35 0.07129 0.4080

0.425 0.04683 0.2383

Table 1: Examples of orbit shape parameters. The names in the first row refer to the titles
of the corresponding subsections.
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Figure 1: Tunes obtained using the parameters in Table 1. Betatron resonance conditions
are shown up to 3rd order, with the structural resonances shown with thick lines and non-
structural with thin lines.

To go any further with the study, we need to choose the parameters that will turn this
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purely geometrical problem into an actual cyclotron design: these are the value of R∞ and
the mass and charge of the particles to accelerate. Because I am interested in the design of
a cyclotron such as this [4]), I choose R∞ = 5 m, and the particles to be H+

2 ions. With this
choice, one can now produce a field map of the cyclotron median plane from r(a, θ) using:

B(r, θ) =
β(a(r, θ))√

1− β2(a(r, θ))

m

qρ(a(r, θ), θ)
, (13)

Note that the “inverse” function a(r, θ) must be constructed from r(a, θ) using some numer-
ical method (I use a bicubic spline to construct this inverse function).
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Figure 2: Example of isochronous field map produce using from orbit. The 5 orbits shown
in red were used to construct the spline function r(a, θ), which in turn was used to produce
the magnetic field map.
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Figure 3: Transverse tunes, and relative variation of the orbital frequency, plotted as a
function of the H+

2 beam energy for the example shown in Fig. 2. Crosses are results of
calculation from from orbit. Solid line are results obtained after extracting a magnetic
field map from from orbit, and running it through the standard orbit code CYCLOPS.

4 Magnet Design

To design a magnet that would produce the same field distribution as in Fig. 2, I wrote
a python script which call OPERA-3D iteratively, adjusting the shape of the pole face to
produce the desired field distribution. The result is presented in Figs. 4 to 7.
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Figure 4: View of the OPERA-3D magnet model.
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Figure 5: Difference between the desired and the achieved magnetic field in the magnet
mid-plane.



TRI-BN-21-19 Page 7

-0.25

 0

 0.25

 0.5

 0.75

 1

 1.25

 0  50  100  150  200

Energy/MeV (H2
+
)

νr
νz

100∆ω/ω 

Figure 6: Transverse tunes, and relative variation of the orbital frequency, plotted as a
function of the H+

2 beam energy for the from a CYCLOPS simulation in the magnetic field
map obtained from OPERA-3d.
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Figure 7: Same tunes as in Fig. 6, but plotted in the tune diagram, showing structural
(thick lines) and non-structural (thin lines) resonance lines up to 3rd order.
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