
Beam Physics Note

TRI-BN-23-20

December 4, 2023

Field From a Quadrupole With a Hyperbolic

Tangent Strength Function

Thomas Planche, Aveen Mahon

TRIUMF

Abstract: The 3-dimensional field distribution from a soft-edged quadrupole
can always be obtain from a truncated Taylor series. However, in cases where
the beam is large and occupies most of the quadrupole aperture, it is not
obvious at what order to truncate the Taylor series. In such cases, it is desirable
to have at one’s disposal an exact solution to calculate the field from a soft-
edges quadrupole in 3-d space. In this note I review the known solution from
quads with a sech2 strength function and I propose a extended solution for
quads with fringe field fall-off given by a first-order Enge (i.e. tanh) strength
function.
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1 Sech Quadrupole

Derevjankin [1, 2] proposed a formula that gives the scalar potential for a quadrupole
with arbitrary on-axis field gradient profile k(z):

V (x, y, z) = −Re

{∫ z+ix

z+iy

∫
k(ζ)dζdt

}
. (1)

Baartman used this formula to obtain an explicit expression for the potential from a
quadrupole with k(z) = K

2 sech2 z. The equation given in [3, Eq. (9)] can alternatively
be written as:

V (x, y, z) = −K
4

log

(
cos 2x+ cosh 2z

cos 2y + cosh 2z

)
. (2)

One can verify that, as expected, ∇2V = 0. The explicit expression for ~F = ∇V given in
[3, Eq. (10–12)] does not need to be reproduced here. The electric field distribution from
an electrostatic quadrupole is given by:

~E = −~F , (3)

where K is in unit of electric field.
The same formula can be used to derive the magnetic field distribution from a magnetic

quadrupole after rotating the scalar potential by 45 degree:

~B(x, y, z) = −∇V
(
x− y√

2
,
x+ y√

2
, z

)
, (4)

provided that K is in unit of magnetic field. The application of the chain rule, and the fact

that ∇
(
x−y√

2
, x+y√

2
, z
)

is the matrix of rotation around z by an angle of 45 degree, lead to:

~B(x, y, z) = −~F
(
x− y√

2
,
x+ y√

2
, z

)
·

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 . (5)

2 Tanh Quadrupole

For quadrupoles that don’t have a sech2-like strength function, one can try and use the
more general Enge function [4] to fit the field fall-off on each side of the magnet. Here we
consider only the case of a quadrupole with identical entrance and exit edges, separated by
a distance L and with all Enge coefficients equal to 0 except for c1 = 2/λ. The strength
function of our quadrupole becomes:

k(z) =
K

L

 1

1 + exp 2
(
z−L/2
λ

) − 1

1 + exp 2
(
z+L/2
λ

)
 . (6)

Note that
∫∞
−∞ k(z)dz = K, the integrated strength of our quadrupole. To keep the math

nice and tidy we choose hereunder our unit of length so that λ = 1. Using the identity
tanhx = 1− 2

1+e2x we re-write:

k(z) =
K

2L
(tanh(z + L/2)− tanh(z − L/2)) . (7)
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Using Eq. (1) leads to:

V =
K

4L
Re
{

Li2

(
−eL+2(ix+z)

)
− Li2

(
−e−L+2(ix+z)

)
+ Li2

(
−e−L+2(iy+z)

)
− Li2

(
−e−+2(iy+z)

)}
(8)

where Li2 (t) = −
∫ t
0

log 1−z
z dz is the polylogarithm function of order 2. Admittedly, this

expression would not be very usefull except for the fact that its gradient depends only on
conventional trigonometric functions:

Fx =
K

2L
arctan

(
sinhL sin 2x

coshL cos 2x+ cosh 2z

)
Fy = −K

2L
arctan

(
sinhL sin 2y

coshL cos 2y + cosh 2z

)
Fz =

K

4L
log

(
(cosh(L− 2z) + cos 2x)(cosh(L+ 2z) + cos 2y)

(cosh(L+ 2z) + cos 2x)(cosh(L− 2z) + cos 2y)

)
.

(9)

Here again you can use Eq. (3) or (5) to obtain the corresponding electric or magnetic field
distribution.

3 Example Use With Short Permanent Magnet Quads

TRIUMF recently received a shipment of permanent magnet quadrupoles, each with a
length of 9.3 cm and integrated field strenght of 0.3 T. We performed a magnetic map-
ping to verify the properties of these quadrupoles. The measured gradient as a function
of longitudinal distance is shown in figure 1. The integrated gradient obtained from this
measurement is 0.338 T, which is approximately 12.7% higher than the initial magnet spec-
ifications. This plot shows that the sech2 description does not match the permanent magnet
gradient behaviour, motivating the use of the more general Tanh quadrupole description.
Using equation Eq. (7) to fit this data, we obtain the second curve shown in figure 2, with
fit parameters indicated in the legend.

Figure 1: Measured gradient of 0.3 T permanent magnet quadrupole with previus sech2

parameterization for comparison



TRI-BN-23-20 Page 3

Figure 2: Measured gradient of 0.3 T permanent magnet quadrupole with tanh fit for
comparison.
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